Previous |  Up |  Next

Article

References:
[1] V. I. Bogačev, S. A. Škarin: On differentiable and Lipschitz mappings between Banach spaces. (in Russian), Matem. Zametki 44 (1988), 567-583. MR 0980578
[2] J. M. Borwein, D. Preiss: A smooth variational principle with applications to sub-differentiability and to differentiability of convex functions. Trans. Amer. Math. Soc. 303 (1987), 517-527. DOI 10.1090/S0002-9947-1987-0902782-7 | MR 0902782
[3] N. Bourbaki: Eléments de Mathématique, Variétés différentielles et analytiques. Paris 1967, 1971.
[4] H. Cartan: Calcul différentiel, Formes différentielles. Paris 1967. MR 0223194
[5] M. Fabian, N. V. Zhivkov: A characterization of Asplund spaces with the help of local $\epsilon$-supports of Ekeland and Lebourg. C. R. Acad. Bulgare Sci. 38 (1985), 671 - 674. MR 0805439 | Zbl 0577.46012
[6] S. Fitzpatrick: Separably related sets and the Radon-Nikodým property. Illinois J. Math. 29 (1985), 229-247. MR 0784521 | Zbl 0546.46009
[7] J. R. Giles: On the characterization of Asplund spaces. J. Austral. Math. Soc. (Series A) 32 (1982), 134-144. DOI 10.1017/S1446788700024472 | MR 0643437
[8] P. S. Kenderov: Monotone operations in Asplund spaces. C. R. Acad. Bulgare Sci. 30 (1977), 963-964. MR 0463981
[9] K. Kuratowski: Topology, Vol. I. New York, 1966. MR 0217751 | Zbl 0158.40901
[10] A. Nijenhuis: Strong derivatives and inverse mapping. Amer. Math. Monthly 81 (1974), 969-980. DOI 10.2307/2319298 | MR 0360958
[11] R. R. Phelps: Convex functions, monotone operators and differentiability. Lect. Notes in Math. 1364, Springer-Verlag, 1989. MR 0984602 | Zbl 0658.46035
[12] D. Preiss: Gateaux differentiable functions are somewhere Frechet differentiable. Rend. Circ. Mat. di Palermo, Ser. II, 33 (1984), 122-133. MR 0743214 | Zbl 0573.46024
[13] R. T. Rockafellar: The theory of subgradients and its applications to problems of optimization. Heldermann, Berlin, 1981. MR 0623763 | Zbl 0462.90052
[14] L. Veselý, L. Zajíček: Delta-convex mappings between Banach spaces and applications. Dissertationes Mathematicae 289, Warszawa 1989, 48 pp. MR 1016045
[15] L. Zajíček: A generalization of an Ekeland-Lebourg theorem and the differentiability of distance functions. Proc. 11th Winter School, Suppl. Rend. Circ. Mat. di Palermo, Ser. II, nr. 3 (1984), 403-410. MR 0744405
[16] L. Zajíček: Strict differentiability via differentiability. Acta Univ. Carolinae 28 (1987), 157-159. MR 0932752
Partner of
EuDML logo