Previous |  Up |  Next

Article

Title: Remark on cavitation solutions of stationary compressible Navier-Stokes equations in one dimension (English)
Author: Lovicar, Vladimír
Author: Straškraba, Ivan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 41
Issue: 4
Year: 1991
Pages: 653-662
.
Category: math
.
MSC: 35Q30
MSC: 76D05
MSC: 76N10
idZBL: Zbl 0763.35074
idMR: MR1134955
DOI: 10.21136/CMJ.1991.102497
.
Date available: 2008-06-09T15:42:16Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102497
.
Reference: [1] Antoncev S. N., Kažichov A. V., Monachov V. N.: Boundary value problems of the mechanics of inhomogeneous fluids.Novosibirsk: Izdatel. ,,Nauka" Sibirsk. Otdel. (1983), (Russian).
Reference: [2] Beirâo da Veiga H.: An $L^p$-theory for the n-dimensional, stationary, compressible Navier-Stokes equations, and the incompressible limit for compressible fluids. The equilibrium solutions.Commun. Math. Phys., 109 (1987), 229-248. MR 0880415, 10.1007/BF01215222
Reference: [3] Beirâo da Veiga H.: Long time behavior for one dimensional motion of a general barotropic viscous fluid.Quaderni dell'Istituto di Matematiche Applicate ,,U. Dini" (1988/7), Facoltà di Ingegneria - Università di Pisa.
Reference: [4] Beirâo da Veiga H.: The stability of one dimensional stationary flows of compressible viscous fluids.Quaderni dell'Istituto di Matematiche Applicate ,,U. Dini" (1988/9), Facoltà di Ingegneria - Università di Pisa.
Reference: [5] Kažichov A. V.: Correctness "in the large" of mixed boundary value problems for a model system of equations of a viscous gas.Din. Splošnoj Sredy, 21 (1975), 18-27, (Russian). MR 0478984
Reference: [6] Kažichov A. V.: Stabilization of solutions of an initial-boundary-value problem for the equations of motion of a barotropic viscous fluid.Dif. Urav. 15 (1979), 662-667, (Russian) = Dif. Eqs. 15, 463-467 (1979). MR 0534027
Reference: [7] Kažichov A. V., Petrov A. N.: Correctness of the initial-boundary value problem for a model system of equation of multicomponent mixture.Dinamičeskije zadači mechaniki splošnych sred 35, (1978), 62-73, Sibirsk. Otdel. Inst. Gidrodinamiki (Russian).
Reference: [8] Lovicar V., Straškraba I., Valli A.: On bounded solutions of one-dimensional compressible Navier-Stokes equations.Preprint No. 42, Math. Inst. Czech. Acad. Sci. (MÚ ČSAV) (1989). MR 1066431
Reference: [9] Solonnikov V. A., Kažichov A. V.: Existence theorems for the equations of motion of a compressible viscous fluid.Annu. Rev. Fluid Mech. 13 (1981), 79-95. 10.1146/annurev.fl.13.010181.000455
Reference: [10] Straškraba I., Valli A.: Asymptotic behaviour of the density for one-dimensional Navier-Stokes equations.Manuscripta Math. 62 (1988), 401 - 416. MR 0971685, 10.1007/BF01357718
Reference: [11] Šeluchin V. V.: Uniqueness solubility of the problem of piston motion in a viscous gas.Dinamika splošnoj sredy 31, (1977), 132/150. Sibirsk. Otdel. Gidrodinamiki (Russian).
Reference: [12] Šeluchin V. V.: Stabilization of solutions to a model problem for piston motion in a viscous gas.Někotoryje problemy matematiki i mechaniki 33, (1978), 134-146, Sibirsk. Otdel. Inst. Gidrodinamiki (Russian).
Reference: [13] Šeluchin V. V.: Periodic flows of a viscous gas.Dinamika neodnorodnoj židkosti 42 (1979), 80-102, Sibirsk. Otdel. Inst. Gidrodinamiki (Russian). MR 0602221
Reference: [14] Šeluchin V. V.: Bounded, almost-periodic solutions of a viscous gas equation.Din. splošnoj sredy 44 (1980), 147-163, (Russian). MR 0639194
Reference: [15] Valli A.: Periodic and stationary solution for compressible Navier-Stokes equations via a stability method.Ann. Sc. Norm. Super. Pisa, C1. Sci., (4) 10 (1938), 607-647. MR 0753158
.

Files

Files Size Format View
CzechMathJ_41-1991-4_7.pdf 984.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo