Previous |  Up |  Next

Article

Title: On maximizing a concave function subject to linear constraints by Newton's method (English)
Author: Žáčková, Jitka
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 13
Issue: 4
Year: 1968
Pages: 339-355
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: The paper deals with an adaptation of Newton's method for solving nonlinear programming problems. The adaptation is derived by replacing the gradient direction in Rosen's method by Newton's direction and both its convergence and practical aspects are discussed. Convergence properties of another adaptation of Newton's method (suggested by Hájek) are studied, too. ()
MSC: 65K05
MSC: 90C26
MSC: 90C30
idZBL: Zbl 0212.18202
idMR: MR0256732
DOI: 10.21136/AM.1968.103178
.
Date available: 2008-05-20T17:43:00Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103178
.
Reference: [1] J. Hájek: Minimalisace nákladů při dosažení předepsané přesnosti současně u několika odhadů.Apl. mat., 7 (1962), p. 405-425. MR 0155383
Reference: [2] S. Karlin: Mathematical Methods and Theory in Games.Programming and Economics, Vol. I, London 1959. MR 1160778
Reference: [3] J. B. Rosen: The Gradient Projection Method for Nonlinear Programming. Part I. Linear Constraints.J. Soc. Industr. Appl. Math., 8 (1960), p. 181 - 217. MR 0112750, 10.1137/0108011
Reference: [4] J. Žáčkova: Dva příspěvky k matematickému programování.Kandidátská disertační práce, matematicko-fyzikální fakulta Karlovy university, Praha 1966.
.

Files

Files Size Format View
AplMat_13-1968-4_5.pdf 2.734Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo