Previous |  Up |  Next

Article

Title: Periodic solutions of the first boundary value problem for a linear and weakly nonlinear heat equation (English)
Author: Šťastnová, Věnceslava
Author: Vejvoda, Otto
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 13
Issue: 6
Year: 1968
Pages: 466-477
Summary lang: English
Summary lang: Czech
.
Category: math
.
Summary: One investigates the existence of an $\omega$-periodic solution of the problem $u_t=u_{xx}+cu+g(t,x)+\epsilon f(t,x,u,u_x,\epsilon),\ u(t,0)=h_0(t)+\epsilon \chi_0(t,u(t,0),u(t,\pi)), u(t,\pi)=h_1(t)+\epsilon \chi_1(t,u(t,0), u(t,\pi))$, provided the functions $g,f,h_0,h_1,\chi_0,\chi_1$ are sufficiently smooth and $\omega$-periodic in $t$. If $c\neq k^2$, $k$ natural, such a solution always exists for sufficiently small $\epsilon >0$. On the other hand, if $c=l^2$, $l$ natural, some additional conditions have to be satisfied. (English)
Keyword: partial differential equations
MSC: 35-12
idZBL: Zbl 0165.44302
idMR: MR0243188
DOI: 10.21136/AM.1968.103196
.
Date available: 2008-05-20T17:43:49Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103196
.
Reference: [1] P. Fife: Solutions of parabolic boundary problems existing for all time.Arch. Rat. Mech. Anal. 76, 1964, 155-186. Zbl 0173.38204, MR 0167727, 10.1007/BF00250642
Reference: [2] И. И. Шмулев: Периодические решения первой краевой задачи для параболических уравнений.Математический сборник 66 (108), 3, 1965, 398-410. Zbl 1099.01519, MR 0173097
Reference: [3] J. L. Lions: Sur certain équations paraboliques non linéaires.Bull. Soc. Math. France, 93, 2, 1965, 155-176. MR 0194760
Reference: [4] T. Kusano: A remark on a periodic boundary problem of parabolic type.Proc. Jap. Acad. XLII, I, 1966, 10-12. Zbl 0166.37102, MR 0211034
Reference: [5] T. Kusano: Periodic solutions of the first boundary problem for quasilinear parabolic equations of second order.Funkc. Ekvac. 9, 1 - 3, 1966, 129-138. Zbl 0154.36101, MR 0209684
Reference: [6] O. Vejvoda: Periodic solutions of a linear and weakly nonlinear wave equation in one dimension.I. Czech. Math. J. 14 (89), 1964, 341-382. MR 0174872
.

Files

Files Size Format View
AplMat_13-1968-6_4.pdf 1.862Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo