Previous |  Up |  Next

Article

Title: On a method of D. Marsal for equations with positive operators (English)
Author: Marek, Ivo
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 15
Issue: 6
Year: 1970
Pages: 413-417
Summary lang: English
Summary lang: Czech
.
Category: math
.
Summary: In this paper is studied the equation $(^*)x=Tx+f$ in a complex Banach space $X$, its ordering being given by a normal reproducing cone $K$. Under the assumption that $(^*)$ has exactly one solution in $K$ it is shown that a certain sequence $(w_p)$ (given by iterations - which is an analogue of Marsal's method) converges to $x^*$. The paper is a generalization of Marsal's results. ()
MSC: 65F10
MSC: 65J05
idZBL: Zbl 0274.65019
idMR: MR0283596
DOI: 10.21136/AM.1970.103315
.
Date available: 2008-05-20T17:49:15Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103315
.
Reference: [1] M. G. Krein M. A. Rutman: Linear operators leaving invariant a cone in a Banach space.Uspekhi Mat. Nauk III (1948), N 3, 3-95 (Russian). MR 0027128
Reference: [2] I. Marek: Iterations of linear bounded operators in non self-adjoint eigenvalue problems and Kellogg's iterations.Czech. Math. J. 12 (1962), 536-554. MR 0149297
Reference: [3] D. Marsal: Konvergenzbeschleunigte Iteration von linearen Gleichungssystemen bei Divergenz des klassischen Verfahren und besonderer Berücksichtigung von Randwertproblemen.Computing 4 (1969), 234-245. MR 0248972, 10.1007/BF02234772
Reference: [4] H. Schaefer: Halbgeordnete lokalkonvexe Vektorräume.Math. Ann. 135 (1958), 115-141. Zbl 0080.31501, MR 0106401, 10.1007/BF01343098
.

Files

Files Size Format View
AplMat_15-1970-6_4.pdf 686.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo