Previous |  Up |  Next


The reduction and the concentration of the parameters determining an interpolation polynomial on a triangle are presented. The interpolations obtained are combined with reduced Hermite interpolations and these combinations are then used for solving plane elliptic boundary value problems under the assumption that the considered domain is polygonal.
[1] Ženíšek A.: Interpolation Polynomials on the Triangle. Numer. Math. 15, 283 - 296 (1970). DOI 10.1007/BF02165119 | MR 0275014
[2] Bramble J. H., Zlámal M.: Triangular Elements in the Finite Element Method. Math. Соmр. 24, 809-820 (1970). MR 0282540
[3] Koukal S.: Piecewise Polynomial Interpolations and their Applications to Partial Differential Equations. (Czech). Sborník VAAZ, Sv. 18, 1/B, 29-38 (1970), Brno.
[4] Melkes F.: Reduced Piecewise Bivariate Hermite Interpolations. Numer. Math. 19, 326-340 (1972). DOI 10.1007/BF01404879 | MR 0317510 | Zbl 0227.65007
[5] Bell K.: A Refined Triangular Plate Bending Finite Element. Inter. J. for Numerical Methods in Engineering 1, 101 - 122 (1969).
[6] Zlámal M.: A Finite Procedure of the Second Order of Accuracy. Numer. Math. 14, 394 to 402 (1970). DOI 10.1007/BF02165594 | MR 0256577
[7] Birkhoff G., Schultz M. H., Varga R. S.: Piecewise Hermite Interpolation in One and Two Variables with Application to Partial Differential Equations. Numer. Math. 11, 232 - 256 (1968). DOI 10.1007/BF02161845 | MR 0226817
[8] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967. MR 0227584
[9] Felippa A. C.: Refined Finite Element Analysis of Linear and Nonlinear Two- Dimensional Structures. SESM Report No. 66-22, University of California, Berkeley, Calif., 1967.
[10] Anderheggen E.: Programme zur Methode der finiten Elemente. Institut für Baustatik, Eidgenössische Technische Hochschule, Zürich, 1969.
Partner of
EuDML logo