Previous |  Up |  Next

Article

Title: Piecewise polynomial interpolations in the finite element method (English)
Author: Koukal, Stanislav
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 18
Issue: 3
Year: 1973
Pages: 146-160
Summary lang: English
Summary lang: Czech
.
Category: math
.
Summary: The reduction and the concentration of the parameters determining an interpolation polynomial on a triangle are presented. The interpolations obtained are combined with reduced Hermite interpolations and these combinations are then used for solving plane elliptic boundary value problems under the assumption that the considered domain is polygonal. ()
MSC: 65N15
MSC: 65N30
idZBL: Zbl 0305.65070
idMR: MR0321318
DOI: 10.21136/AM.1973.103465
.
Date available: 2008-05-20T17:55:58Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103465
.
Reference: [1] Ženíšek A.: Interpolation Polynomials on the Triangle.Numer. Math. 15, 283 - 296 (1970). MR 0275014, 10.1007/BF02165119
Reference: [2] Bramble J. H., Zlámal M.: Triangular Elements in the Finite Element Method.Math. Соmр. 24, 809-820 (1970). MR 0282540
Reference: [3] Koukal S.: Piecewise Polynomial Interpolations and their Applications to Partial Differential Equations.(Czech). Sborník VAAZ, Sv. 18, 1/B, 29-38 (1970), Brno.
Reference: [4] Melkes F.: Reduced Piecewise Bivariate Hermite Interpolations.Numer. Math. 19, 326-340 (1972). Zbl 0227.65007, MR 0317510, 10.1007/BF01404879
Reference: [5] Bell K.: A Refined Triangular Plate Bending Finite Element.Inter. J. for Numerical Methods in Engineering 1, 101 - 122 (1969).
Reference: [6] Zlámal M.: A Finite Procedure of the Second Order of Accuracy.Numer. Math. 14, 394 to 402 (1970). MR 0256577, 10.1007/BF02165594
Reference: [7] Birkhoff G., Schultz M. H., Varga R. S.: Piecewise Hermite Interpolation in One and Two Variables with Application to Partial Differential Equations.Numer. Math. 11, 232 - 256 (1968). MR 0226817, 10.1007/BF02161845
Reference: [8] Nečas J.: Les méthodes directes en théorie des équations elliptiques.Academia, Prague 1967. MR 0227584
Reference: [9] Felippa A. C.: Refined Finite Element Analysis of Linear and Nonlinear Two- Dimensional Structures.SESM Report No. 66-22, University of California, Berkeley, Calif., 1967.
Reference: [10] Anderheggen E.: Programme zur Methode der finiten Elemente.Institut für Baustatik, Eidgenössische Technische Hochschule, Zürich, 1969.
.

Files

Files Size Format View
AplMat_18-1973-3_2.pdf 2.065Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo