Previous |  Up |  Next


This article deals with the estimate of exactness of finite element method which is applied to homogeneous non-elliptic boundary value problem. It is supposed that the respective differential operator of the problem is a sum of elliptic and a "perturbed" operator. A sufficient condition for this "perturbed" operator is given in order that the convergency of finite element method may be maintained.
[1] J. L. Lions E. Magenes: Problèmes aux limites non homogenès et applications. Dunod, Paris 1968.
[2] G. Strang G. Fix: A Fourier Analysis of the Finite Element Variational Methods. (to appear)
[3] S. G. Michlin: Variacionnyje metody v matěmatičeskoj fizike. Gostěchizdat, Moskva 1957.
[4] I. Babuška: Error -Bounds for Finite Element Method. Num. Math. 16, 1970, 322-377. DOI 10.1007/BF02165003 | MR 0288971
[5] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Prague, 1967. MR 0227584
Partner of
EuDML logo