Title:
|
Elliptic boundary value problems with nonvariational perturbation and the finite element method (English) |
Author:
|
Janovský, Vladimír |
Language:
|
English |
Journal:
|
Aplikace matematiky |
ISSN:
|
0373-6725 |
Volume:
|
18 |
Issue:
|
6 |
Year:
|
1973 |
Pages:
|
422-433 |
Summary lang:
|
English |
Summary lang:
|
Czech |
. |
Category:
|
math |
. |
Summary:
|
This article deals with the estimate of exactness of finite element method which is applied to homogeneous non-elliptic boundary value problem. It is supposed that the respective differential operator of the problem is a sum of elliptic and a "perturbed" operator. A sufficient condition for this "perturbed" operator is given in order that the convergency of finite element method may be maintained. () |
MSC:
|
35A35 |
MSC:
|
35B20 |
MSC:
|
35J40 |
MSC:
|
65N10 |
idZBL:
|
Zbl 0281.35007 |
idMR:
|
MR0334549 |
DOI:
|
10.21136/AM.1973.103498 |
. |
Date available:
|
2008-05-20T17:57:28Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/103498 |
. |
Reference:
|
[1] J. L. Lions E. Magenes: Problèmes aux limites non homogenès et applications.Dunod, Paris 1968. |
Reference:
|
[2] G. Strang G. Fix: A Fourier Analysis of the Finite Element Variational Methods.(to appear) |
Reference:
|
[3] S. G. Michlin: Variacionnyje metody v matěmatičeskoj fizike.Gostěchizdat, Moskva 1957. |
Reference:
|
[4] I. Babuška: Error -Bounds for Finite Element Method.Num. Math. 16, 1970, 322-377. MR 0288971, 10.1007/BF02165003 |
Reference:
|
[5] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague, 1967. MR 0227584 |
. |