Previous |  Up |  Next

Article

Title: Inhomogeneous boundary value problems for the von Kármán equations. I (English)
Author: Hlaváček, Ivan
Author: Naumann, Joachim
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 19
Issue: 4
Year: 1974
Pages: 253-269
Summary lang: English
Summary lang: Czech
.
Category: math
.
Summary: The existence of a "variational" solution to the system of nonlinear equations, governing the equilibrium of a thin elastic plate is proved. The boundary conditions correspond with a plate, the edge of which is partially clamped, supported and elastically supported or clamped, being loaded by moments, transversal loads and by forces in the plane of the plate. In Part I only "fixed" plates are studied, i.e. such that any deflection of a rigid plate on rigid supports and clampings is eliminated by the kinematic constraints. ()
MSC: 35A15
MSC: 35Q99
MSC: 74K20
idZBL: Zbl 0313.35064
idMR: MR0377307
DOI: 10.21136/AM.1974.103539
.
Date available: 2008-05-20T17:59:18Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103539
.
Reference: [1] Berger M. S., Fife P.: On von Kármán's equations and the buckling of a thin elastic plate, II. Plate with general edge conditions.Comm. Pure Appl. Math., 21 (1968), 227-241. MR 0229978, 10.1002/cpa.3160210303
Reference: [2] Brézis H.: Équations et inéquations non-linéaires dans les espaces véctoriels en dualité.Ann. Inst. Fourier, Grenoble, 18 (1968), 115-176. MR 0270222, 10.5802/aif.280
Reference: [3] Fife P.: Non-linear deflection of thin elastic plates under tension.Comm. Pure Appl. Math., 14 (1961), 81-112. Zbl 0099.40802, MR 0128697, 10.1002/cpa.3160140202
Reference: [4] Hlaváček I., Nečas J.: On inequalities of Korn's type, I. Boundary-value problems for elliptic systems of partial differential equations.Arch. Rat. Mech. Anal., 36 (1970) 305-311. Zbl 0193.39001, MR 0252844
Reference: [5] Jakovlev G. N.: Boundary properties of functions of class $W_p^{(1)}$ on the domains with angular points.(Russian). DAN SSSR, 140 (1961), 73-76. MR 0136988
Reference: [6] Knightly G. H.: An existence theorem for the von Kármán equations.Arch. Rat. Mech. Anal., 27 (1967), 233-242. Zbl 0162.56303, MR 0220472, 10.1007/BF00290614
Reference: [7] Knightly G. H., Sather D.: On nonuniqueness of solutions of the von Kármán equations.Arch. Rat. Mech. Anal., 36 (1970), 65-78. Zbl 0188.57603, MR 0261835, 10.1007/BF00255747
Reference: [8] Morozov N. F.: Nonlinear problems in the theory of thin plates.(Russian). Vestnik Leningr. Univ., 19 (1955), 100-124. MR 0102224
Reference: [9] Naumann J.: An existence theorem for the v. Kármán equations under free boundary conditions.Apl. mat. 19 (1974), 17-27. MR 0346294
Reference: [10] Naumann J.: On bifurcation buckling of thin elastic shells.(to appear). Zbl 0303.73031, MR 0373426
Reference: [11] Nečas J.: Les méthodes directes en théorie des equations elliptiques.Academia, Prague 1967. MR 0227584
.

Files

Files Size Format View
AplMat_19-1974-4_5.pdf 2.114Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo