Article
Summary:
The existence of a "variational" solution to the system of nonlinear equations, governing the equilibrium of a thin elastic plate is proved. The boundary conditions correspond with a plate, the edge of which is partially clamped, supported and elastically supported or clamped, being loaded by moments, transversal loads and by forces in the plane of the plate. In Part I only "fixed" plates are studied, i.e. such that any deflection of a rigid plate on rigid supports and clampings is eliminated by the kinematic constraints.
Related articles:
References:
                        
[1] Berger M. S., Fife P.: 
On von Kármán's equations and the buckling of a thin elastic plate, II. Plate with general edge conditions. Comm. Pure Appl. Math., 21 (1968), 227-241. 
DOI 10.1002/cpa.3160210303 | 
MR 0229978 
[2] Brézis H.: 
Équations et inéquations non-linéaires dans les espaces véctoriels en dualité. Ann. Inst. Fourier, Grenoble, 18 (1968), 115-176. 
DOI 10.5802/aif.280 | 
MR 0270222 
[4] Hlaváček I., Nečas J.: 
On inequalities of Korn's type, I. Boundary-value problems for elliptic systems of partial differential equations. Arch. Rat. Mech. Anal., 36 (1970) 305-311. 
MR 0252844 | 
Zbl 0193.39001 
[5] Jakovlev G. N.: 
Boundary properties of functions of class $W_p^{(1)}$ on the domains with angular points. (Russian). DAN SSSR, 140 (1961), 73-76. 
MR 0136988 
[8] Morozov N. F.: 
Nonlinear problems in the theory of thin plates. (Russian). Vestnik Leningr. Univ., 19 (1955), 100-124. 
MR 0102224 
[9] Naumann J.: 
An existence theorem for the v. Kármán equations under free boundary conditions. Apl. mat. 19 (1974), 17-27. 
MR 0346294 
[11] Nečas J.: 
Les méthodes directes en théorie des equations elliptiques. Academia, Prague 1967. 
MR 0227584