Previous |  Up |  Next

Article

Title: Some $L_2$-error estimates for semi-variational method applied to parabolic equations (English)
Author: Hlaváček, Ivan
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 19
Issue: 5
Year: 1974
Pages: 327-341
Summary lang: English
Summary lang: Czech
.
Category: math
.
Summary: The convergence of the semi-variational approximations to the solution of a mixed parabolic problem is investigated. The derivation of an estimate in $L_2$-norm follows the approach suggested by Dupont, using a parabolic regularity and a projection introduced by Bramble and Osborn. As a result, the second semi-variational approximation is found to possess the maximal possible order of accuracy in space and the fourth order in time. ()
MSC: 35K30
MSC: 65M99
MSC: 65N30
MSC: 65N99
idZBL: Zbl 0316.65022
idMR: MR0378447
DOI: 10.21136/AM.1974.103549
.
Date available: 2008-05-20T17:59:45Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103549
.
Reference: [1] I. Hlaváček: On a semi-variational method for parabolic equations.Aplikace matematiky 17 (1972), 5, 327-351, 18 (1973), l, 43-64.
Reference: [2] J. Douglas, Jr. T. Dupont: Galerkin methods for parabolic equations.SIAM J. Numer. Anal. 7(1970), 4, 575-626.
Reference: [3] T. Dupont: Some $L^2$ error estimates for parabolic Galerkin methods.
Reference: [4] J. H. Bramble J. E. Osborn: Rate of convergence estimates for non-self adjoint eigenvalue approximations.MRC Report 1232, Univ. Wisconsin, 1972.
Reference: [5] J. L. Lions: Equations differentielles operationelles et problèmes aux limites.Springer-Verlag, Berlin, 1961. MR 0153974
.

Files

Files Size Format View
AplMat_19-1974-5_5.pdf 2.224Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo