Previous |  Up |  Next


Solvability of the general boundary value problem for von Kármán system of nonlinear equations is studied. The problem is reduced to an operator equation. Coerciveness of the corresponding operator is proved, which together with its other properties implies the existence of a solution.
[1] Berger M. S.: On von Kármán's equations and the buckling of a thin elastic plate I. Comm. Pure Appl. Math., XX, 1967, 687-719. DOI 10.1002/cpa.3160200405 | MR 0221808 | Zbl 0162.56405
[2] Hlaváček I., Naumann J.: Inhomogeneous boundary value problems for the von Kármán Equations, I. Aplikace matematiky 19 (1974), 253 - 269. MR 0377307
[3] Knightly G. H.: An existence theorem for the von Kármán equation. Arch. Rat. Mech. Anal., 27, 1967, 233-242. DOI 10.1007/BF00290614 | MR 0220472
[4] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967. MR 0227584
[5] Nečas J.: Fredholm theory of boundary value problems for nonlinear ordinary differential operators. Theory of Nonlinear Operators. Academia, Prague, 1973, 85-119. (Proceedings of the Summer School held in September 1971 at Babylon, Czechoslovakia). MR 0402562
Partner of
EuDML logo