Previous |  Up |  Next

Article

Title: Convergence of a finite element method based on the dual variational formulation (English)
Author: Haslinger, Jaroslav
Author: Hlaváček, Ivan
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 21
Issue: 1
Year: 1976
Pages: 43-65
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: An "equilibrium model" with piecewise linear polynomials on triangular clements applied to the solution of a mixed boundary value problem for a second order elliptic equation is studied. The procedure is proved to be second order correct in $h$ (the maximal side in the triangulation) provided the exact solution is sufficiently smooth. ()
MSC: 35A35
MSC: 35B45
MSC: 35J20
MSC: 65N30
idZBL: Zbl 0326.35020
idMR: MR0398126
DOI: 10.21136/AM.1976.103621
.
Date available: 2008-05-20T18:03:24Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103621
.
Reference: [1] B. Fraeijs de Veubeke: Displacement and equilibrium models in the finite element method.Stress Analysis, ed. by O.C. Zienkiewicz and G. Holister, J. Wiley, 1965, 145-197.
Reference: [2] B. Fraeijs de Veubeke O. C. Zienkiewicz: Strain energy bounds in finite-element analysis by slab analogies.J. Strain Analysis 2, (1967) 265 - 271. 10.1243/03093247V024265
Reference: [3] V. B., Jr. Watwood B. J. Hartz: An equilibrium stress field model for finite element solution of two-dimensional elastostatic problems.Int. J. Solids Structures 4, (1968), 857-873. 10.1016/0020-7683(68)90083-8
Reference: [4] B. Fraeijs de Veubeke M. Hogge: Dual analysis for heat conduction problems by finite elements.Int. J. Numer. Meth. Eng. 5, (1972), 65 - 82. 10.1002/nme.1620050107
Reference: [5] J. P. Aubin H. G. Burchard: Some aspects of the method of the hypercircle applied to elliptic variational problems.Numer. sol. Part. Dif. Eqs. II, SYNSPADE (1970), 1 - 67. MR 0285136
Reference: [6] J. Vacek: Dual variational principles for an elliptic partial differential equation.Apl. mat. 21 (1976), 5-27. Zbl 0345.35035, MR 0412594
Reference: [7] I. Hlaváček: On a conjugate semi-variational method for parabolic equations.Apl. mat. 18 (1973), 434-444. MR 0404858
Reference: [8] F. Grenacher: A posteriori error estimates for elliptic partial differential equations.Inst. Fluid Dynamics and Appl. Math., Univ. Maryland, TN-BN-T 43, July 1972.
Reference: [9] W. Prager J. L. Synge: Approximations in elasticity based on the concept of function space.Quart. Appl. Math. 5 (1947), 241 - 269. MR 0025902, 10.1090/qam/25902
Reference: [10] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague 1967. MR 0227584
Reference: [11] I. Hlaváček: Variational principles in the linear theory of elasticity for general boundary conditions.Apl. mat. 12 (1967), 425-448. MR 0231575
Reference: [12] J. Haslinger J. Hlaváček: Convergence of a dual finite element method in $R_n$.CMUC 16 (1975), 469-485. MR 0386303
Reference: [13] H. Gajewski: On conjugate evolution equations and a posteriori error estimates.Proceedings of Internal. Summer School on Nonlinear Operators held in Berlin, 1975.
.

Files

Files Size Format View
AplMat_21-1976-1_5.pdf 2.902Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo