Previous |  Up |  Next

Article

Title: Relaxation lengths and non-negative solutions in neutron transport (English)
Author: Kyncl, Jan
Author: Marek, Ivo
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 22
Issue: 1
Year: 1977
Pages: 1-13
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Keyword: equation of neutron transport
Keyword: fredholm theory
Keyword: integro-partial differential equations
Keyword: spectral theory
Keyword: existence of nonnegative eigenfunctions
MSC: 45B05
MSC: 45C05
MSC: 45K05
MSC: 76P05
MSC: 82C70
idZBL: Zbl 0399.45016
idMR: MR0426731
DOI: 10.21136/AM.1977.103674
.
Date available: 2008-05-20T18:06:20Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103674
.
Reference: [1] M. Borysewicz J. Mika: Time behavior of thermal neutrons in moderator media.CNEN Documents CEC (68), 1 Bologna (1968).
Reference: [2] K. M. Case: Elementary solutions of the transport equation and their applications.Ann. Phys. 9 (1960), 1-23. Zbl 0087.42301, MR 0109471, 10.1016/0003-4916(60)90060-9
Reference: [3] C. Cercignani: Unsteady solutions of the kinetic models with velocity-dependent collision frequency.Ann. Phys. 40 (1966), 454 - 468. MR 0219288, 10.1016/0003-4916(66)90145-X
Reference: [4] B. Davison: Milne problem in a multiplying medium with a linearly anisotropic scattering.Canadian Report CRT 358 (1946).
Reference: [5] B. Davison: Neutron Transport Theory.Oxford University Press, London 1957. Zbl 0077.22505, MR 0095716
Reference: [6] J. J. Duderstadt: Theory of the propagation of the plane-wave disturbances in a distribution of thermal neutrons.J. Math. Phys. 10 (1969), 266-276. MR 0237159, 10.1063/1.1664842
Reference: [7] N. Dunford J. T. Schwartz: Linear operators.Part I. Interscience Publ. New York 1957.
Reference: [8] L. C. Gokhberg M. G. Krein: The basic propositions on defect numbers, root numbers and indices of linear operators.Usp. mat. nauk XII (1957), 43-118 (Russian).
Reference: [9] H. Grad: Asymptotic theory of the Boltzmann equation.I. Proceedings of the Third Intern. Symp. Rarefied Gas Dynamics, Vol. I, Academic Press, New York -London, 1963, pp. 26-59. Zbl 0115.45006, MR 0156656
Reference: [10] E. Hecke: Über die Integralgleichung der kinetischen Gastheorie.Math. Zeitschrift 12 (1922), 277-286.
Reference: [11] S. Kaplan: Properties of the relaxation lengths in $P_L$, double $P_L$ and angle-space synthetic approximations.Bull. Sci. Eng. 28 (1967), 456.
Reference: [12] T. Kato: Perturbation Theory for Linear Operators.Springer-Verlag, Berlin-Heidelberg- New York 1966. Zbl 0148.12601, MR 0203473
Reference: [13] M. G. Krein M. A. Rutman: Linear operators leawing invariant a cone in a Banach space.Usp. mat. Nauk III (1948), N 1, 3 - 95 (Russian), English translation in the Translations of the AMS, Vol. 26 (1952). MR 0027128
Reference: [14] I. Kuščer N. Corngold: Discrete relaxation times in neutron thermalization.Phys. Rev. 139 (1965), A981-990; 140 (1965), A85. 10.1103/PhysRev.139.A981
Reference: [15] I. Kuščer I. Vidav: On the spectrum of relaxation lengths of neutron distributions in a moderator.J. Math. Anal. Appl. 25 (1969), 80-92. 10.1016/0022-247X(69)90214-5
Reference: [16] I. Marek: Frobenius theory of positive operators. Comparison theorems and applications.SIAM J. Appl. Math. 19 (1970), 607-628. Zbl 0219.47022, MR 0415405, 10.1137/0119060
Reference: [17] I. Marek: On Fredholm points of compactly perturbed bounded linear operators.Acta Univ. Carol. - Mathematica et Physica Vol. 17, (1976) No. 1, 65 - 72. MR 0423106
Reference: [18] I. Marek: On some spectral properties of Radon-Nikolskii operators and their generalizations.Comment. Math. Univ. Carol. 3, 1 (1962), 20-30. MR 0144216
Reference: [19] J. Mika: Neutron transport with anisotropic scattering.Nucl. Sd. Eng. 11 (1961), 415 - 427. 10.13182/NSE61-1
Reference: [20] B. Montagnini M. L. Demuru: Complete continuity of the free gas scattering operator in neutron thermalization theory.J. Math. Anal. Appl. 12 (1965), 49-57. MR 0186322, 10.1016/0022-247X(65)90052-1
Reference: [21] W. Rudin: Functional Analysis.McGraw-Hill Co. New York, 1973. Zbl 0253.46001, MR 0365062
Reference: [22] I. Sawashima: On spectral properties of some positive operators.Natur. Sci. Rep. Ochanomizu Univ. 15 (1969), 55-66. MR 0187096
Reference: [23] V. F. Turchin: Thermal Neutrons.Gosatomizdat, Moscow 1963 (Russian).
Reference: [24] L. Van Hove: Correlations in space and time and Born approximation scattering in systems of interacting particles.Phys. Rev. 95 (1954), 249. Zbl 0056.44205, MR 0063964, 10.1103/PhysRev.95.249
Reference: [25] A. M. Weinberg E. P. Wigner: The Physical Theory of Neutron Chain Reactors.Chicago University Press, Chicago 1958. MR 0113336
Reference: [26] M. M. R. Williams: The Slowing Down and Thermalization of Neutrons.North-Holland Publ. Company, Amsterdam 1966.
Reference: [27] R. Zelazny: Exact solution of a critical problem for a slab.J. Math. Phys. 2 (1961), 538-542. Zbl 0102.43102, MR 0129922, 10.1063/1.1703738
.

Files

Files Size Format View
AplMat_22-1977-1_1.pdf 1.952Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo