Article
Keywords:
a priori estimates; convergence; dual finite element procedure; parital differential equations; semi-coercive boundary value problems; elliptic type
References:
                        
[1] Hlaváček I.: 
Dual finite element analysis for unilateral boundary value problems. Apl. mat, 22(1977), 14-51. 
MR 0426453[2] Hlaváček I.: 
Dual finite element analysis for elliptic problems with obstacles on the boundary I. Apl. mat. 22 (1977), 244-255 
MR 0440958[5] Haslinger J., Hlaváček I.: 
Convergence of a finite element method based on the dual variational formulation. Apl. mat. 21 (1976), 43 - 65. 
MR 0398126[6] Céa J.: 
Optimisation, théorie et algorithmes. Dunod, Paris 1971. 
MR 0298892[7] Falk R. S.: 
Error estimates for the approximation of a class of variational inequalities. Math. Соmр. 28 (1974), 963-971. 
MR 0391502 | 
Zbl 0297.65061[8] Fichera G.: Boundary value problems of elasticity with unilateral constraints. Encycl. of Physics (ed. S. Flügge), vol. VI a/2. Springer, Berlin 1972.
[9] Nečas J.: 
Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967. 
MR 0227584