Previous |  Up |  Next

Article

Title: A parallel projection method for linear algebraic systems (English)
Author: Sloboda, Fridrich
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 23
Issue: 3
Year: 1978
Pages: 185-198
Summary lang: English
Summary lang: Slovak
Summary lang: Russian
.
Category: math
.
Summary: A direct projection method for solving systems of linear algebraic equations is described. The algorithm is equivalent to the algorithm for minimization of the corresponding quadratic function and can be generalized for the minimization of a strictly convex function. (English)
Keyword: projection method
Keyword: linear algebraic equations
Keyword: elimination
Keyword: orthogonalization
Keyword: conjugate direction methodds
Keyword: nonlinear equations
Keyword: iterative methods for linear systems
MSC: 65F10
MSC: 65F20
MSC: 65F25
MSC: 65H10
MSC: 93C99
idZBL: Zbl 0398.65013
idMR: MR0490260
DOI: 10.21136/AM.1978.103744
.
Date available: 2008-05-20T18:09:27Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103744
.
Reference: [1] R. P. Brent: Algorithms for minimization without derivatives.Prentice-Hall, Englewood Cliffs, New Jersey, (1973). Zbl 0245.65032, MR 0339493
Reference: [2] D. Chazan W. L. Miranker: A nongradient and parallel algorithm for unconstrained minimization.SIAM J. Control, 2 (1970), 207-217. MR 0275637
Reference: [3] E. Durand: Solution numérique des equations algebraiques II.Masson, Paris, (1961).
Reference: [4] D. K. Faddeev V. N. Faddeeva: Computational methods of linear algebra.Fizmatgiz, Moscow, (1960), (Russian).
Reference: [5] L. Fox H. D. Huskey J. D. Wilkinson: Notes on the solution of algebraic linear simutaneous equations.Quart. J. Mech. Appl. Math., 1 (1948), 149-173. MR 0026421, 10.1093/qjmam/1.1.149
Reference: [6] N. Gastinel: Analyse numérique linéaire.Hermann, Paris, (1966). Zbl 0151.21202, MR 0201053
Reference: [7] D. Goldfarb: Modification methods for inverting matrices and solving systems of linear algebraic equations.Math. of Соmр., 26 (1972), 829-852. Zbl 0268.65026, MR 0317527
Reference: [8] M. R. Hestenes E. Stiefel: The method of conjugate gradients for solving linear systems.J. Res. Nat. Bur. Standards, 49 (1952), 409-436. MR 0060307, 10.6028/jres.049.044
Reference: [9] A. S. Householder F. L. Bauer: On certain iterative methods for solving linear systems.Numer. Math., 2 (1960), 55-59. MR 0116464, 10.1007/BF01386209
Reference: [10] S. Kaczmarz: Angenäherte Auflösung von Systemen linearen Gleichungen.Bull. Acad. Polon. Sciences et Lettres, A, (1937), 355-357.
Reference: [11] J. Morris: An escalator process for the solution of linear simultaneous equations.Philos. Mag., 37 (1946), 106-120. Zbl 0061.27101, MR 0018423, 10.1080/14786444608561331
Reference: [12] M. J. D. Powell: An efficient method for finding minimum of a function of several variables without calculating derivatives.Соmр. J., 7 (1964), 155 -162. MR 0187376
Reference: [13] E. W. Purcell: The vector method for solving simultaneous linear equations.J. Math. and Phys., 32 (1954), 180-183. MR 0059065, 10.1002/sapm1953321180
Reference: [14] F. Sloboda: Parallel method of conjugate directions for minimization.Apl. mat., 20 (1975), 436-446. Zbl 0326.90050, MR 0395830
Reference: [15] F. Sloboda: Nonlinear iterative methods and parallel computation.Apl. mat., 21 (1976), 252-262. Zbl 0356.65057, MR 0426411
Reference: [16] F. Sloboda: A conjugate directions method and its application.Proc. of the 8th IFIP Conference on Optimization Techniques, Würzburg, (1977), to appear in Springer Verlag. MR 0483450
Reference: [17] G. Stewart: Conjugate direction methods for solving systems of linear equations.Numer. Math., 21 (1973), 285-297. Zbl 0253.65017, MR 0341837, 10.1007/BF01436383
Reference: [18] P. Václavík: Parallel algorithms for solving 3-diagonal systems of linear equations.(Slovak), Thesis, Fac. of Sc., Komenský Univ., Bratislava (1974).
.

Files

Files Size Format View
AplMat_23-1978-3_4.pdf 1.822Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo