Previous |  Up |  Next

Article

Title: Remark to the comparison of solution properties of Love's equation with those of wave equation (English)
Author: Radochová, Věra
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 23
Issue: 3
Year: 1978
Pages: 199-207
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: In the paper some solution properties of the Love's equation are compared with those of the classical wave equation for a certain class of boundary conditions. The method of small parameter is used. (English)
Keyword: Love’s equation
Keyword: boundary value conditions
Keyword: small parameters
Keyword: wave equation
MSC: 35B40
MSC: 35L05
MSC: 35Q99
MSC: 74K10
idZBL: Zbl 0407.35050
idMR: MR0492985
DOI: 10.21136/AM.1978.103745
.
Date available: 2008-05-20T18:09:30Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103745
.
Reference: [1] Petrovskij I. G.: Partial Differential Equations.Prague 1952 (in Czech). MR 0057425
Reference: [2] Love A. E. H.: A Treatise on the Mathematical Theory of Elasticity.Cambridge 1952.
Reference: [3] Brepta R., Prokopec M.: Stress Waves and Shocks in Solids.Academia 1972 (in Czech),
Reference: [4] Radochová V.: Das Iterationsverfahren für eine partielle Differentialgleichung vierter Ordnung.Arch. Math. (Brno) 1, IX, 1973, 1 - 8. MR 0350165
Reference: [5] Вишик M. И., Люстерник Л. А.: Регулярное вырождение и пограничный слой для линейных дифференциальных уравнений с малым параметром.Успехи мат. наук XII, 1957, 3-122. Zbl 0995.90594
Reference: [6] Levinson N.: The First Boundary Value Problem $\varepsilon \Delta u + A u_x + B u_y + C u = 0$ for Small $\varepsilon$.Ann. of Math. 51, No 2, 1950, 428-445. MR 0033433
Reference: [7] Kreith K.: Sturmian Theorems for Hyperbolic Equations.Proceedings of the Amer. Math. Soc. 22, 1969, 277-281. Zbl 0176.09304, MR 0244602
.

Files

Files Size Format View
AplMat_23-1978-3_5.pdf 1.178Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo