Previous |  Up |  Next

Article

Title: On general boundary value problems and duality in linear elasticity. I (English)
Author: Hünlich, Rolf
Author: Naumann, Joachim
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 23
Issue: 3
Year: 1978
Pages: 208-230
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: The equilibrium state of a deformable body under the action of body forces is described by the well known conditions of equilibrium, the straindisplacement relations, the constitutive law of the linear theory and the boundary conditions. The authors discuss in detail the boundary conditions. The starting point is the general relation between the vectors of stress and displacement on the boundary which can be expressed in terms of a subgradient relation. It is shown that this relation includes as special cases all known classical, bilateral and unilateral boundary conditions. Further, the principle of virtual displacements and the principle of minimum of the potential energy are established and it is shown that these principles are equivalent to the original boundary condition problem. (English)
Keyword: boundary value problems
Keyword: linear elasticity
Keyword: law of interaction
Keyword: principle of virtual displacements
Keyword: principal of minimum potential energy
MSC: 35Q20
MSC: 46N05
MSC: 73C35
MSC: 74B99
MSC: 74H99
idZBL: Zbl 0401.73025
idMR: MR0489538
DOI: 10.21136/AM.1978.103746
.
Date available: 2008-05-20T18:09:33Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103746
.
Reference: [1] A. Brondsted, R. T. Rockafellar: On the subdifferentiability of convex functions.Proc. Amer. Math. Soc., 16 (1965), 605-611. MR 0178103, 10.1090/S0002-9939-1965-0178103-8
Reference: [2] G. Duvaut J. L. Lions: Les inéquations en mécanique et en physique.Dunod, Paris 1972. MR 0464857
Reference: [3] G. Fichera: Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno.Atti Accad. Naz. Lincei, Memorie (Cl. Sci. fis., mat. e nat.), serie 8, vol. 7 (1964), 91-140. Zbl 0146.21204, MR 0178631
Reference: [4] G. Fichera: Boundary value problems of elasticity with unilateral constraints.In: Handbuch der Physik (Herausg.: S. Flügge), Band VI a/2, Springer, 1972.
Reference: [5] H. Gajewski K. Gröger, K. Zacharias: Nichtlineare Operatorgleichurgen und Operatordifferentialgleichungen.Akademie-Verlag, Berlin 1974. MR 0636412
Reference: [6] I. Hlaváček: Variational principles in the linear theory of elasticity for general boundary conditions.Apl. Mat., 12 (1967), 425 - 447. MR 0231575
Reference: [7] I. Hlaváček, J. Nečas: On inequalities of Korn's type. I: Boundary value problems for elliptic systems of partial differential equations. II: Applications to linear elasticity.Arch. Rat. Mech. Anal.. 36 (1970), 305-311, 312-334.
Reference: [8] A. D. loffe, V. M. Tikhomirov: The theory of extremum problems.(Russian). Moscow, 1974.
Reference: [9] F. Lené: Sur les matériaux élastiques à énergie de déformation non quadratique.J. Méc., 13 (1974), 499-534. MR 0375890
Reference: [10] J. J. Moreau: Fonctionelles convexes.College de France, 1966- 1967. MR 0390443
Reference: [11] J. J. Moreau: On unilateral constraints, friction and plasticity.In: New variational techniques in mathematical physics. C. I. M. E., Ed. Cremonese, Roma 1974, 173-322. MR 0513445
Reference: [12] J. J. Moreau: La convexité en statique.In: Analyse convexe et ses applications (ed. by J. P. Aubin), Lecture Notes Econ. and Math. Systems, No. 102 (1974), 141 - 167. Zbl 0302.70001
Reference: [13] J. J. Moreau: La notion de sur-potentiel et les liasions unilaterales en élastostatique.12th Intern. Congr. Appl. Mech.
Reference: [14] B. Nayroles: Quelques applications variationnelles de la théorie des functions duales à la mécanique de solides.J. Méc., 10 (1971), 263-289. MR 0280053
Reference: [15] B. Nayroles: Duality and convexity in solid equilibrium problems.Laboratoire Méc. et d'Acoustique, C. N. R. S., Marseille 1974.
Reference: [16] B. Nayroles: Point de vue algebrique. Convexité et integrandes convexes en mécanique des solides.In: New variational techniques in mathematical physics. C. T. M. E., Ed. Cremonese, Roma 1974, 325-404.
Reference: [17] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague 1967. MR 0227584
Reference: [18] R. T. Rockafellar: Extension of Fenchel's duality theorem for convex functions.Duke Math. J., 33 (1966), 81-90. Zbl 0138.09301, MR 0187062, 10.1215/S0012-7094-66-03312-6
.

Files

Files Size Format View
AplMat_23-1978-3_6.pdf 2.691Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo