Article
Keywords:
oscillatory solutions; oscillating oxidation reaction; stability properties; periodic solution; exponential asymptotically stable; generalized Volterra equation; conditionally stable
Summary:
The stability properties of solutions of the differential system which represents the considered model for the Belousov - Zhabotinskij reaction are studied in this paper. The existence of oscillatory solutions of this system is proved and a theorem on separation of zero-points of the components of such solutions is established. It is also shown that there exists a periodic solution.
References:
                        
[1] E. A. Coddington N. Levison: 
Theory of Ordinary Differential Equations. McGraw Hill Book Co., Inc., New York-Toronto-London 1955. 
MR 0069338[3] P. Hartman: 
Ordinary Differential Equations. (Russian Translation), Izdat. Mir, Moskva 1970. 
MR 0352574 | 
Zbl 0214.09101[5] H. W. Knobloch F. Kappel: 
Gewöhnliche Differentialgleichungen. B. G. Teubner, Stuttgart, 1974. 
MR 0591708[6] Л. С. Понтрягин: 
Обыкновенные диференциальные уравнения. Издат. Наука, Москва 1970. 
Zbl 1107.83313[7] G. Weisbuch J. Salomon, H. Atlan: 
Analyse algébrique de la stabilité d'un système à trois composants tiré de la réaction de Jabotinski. J. de Chimie Physique, 72 (1975), 71 - 77. 
DOI 10.1051/jcp/1975720071