Previous |  Up |  Next

Article

Title: On the existence of oscillatory solutions in the Weisbuch-Salomon-Atlan model for the Belousov-Zhabotinskij reaction (English)
Author: Šeda, Valter
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 23
Issue: 4
Year: 1978
Pages: 280-294
Summary lang: English
Summary lang: Slovak
Summary lang: Russian
.
Category: math
.
Summary: The stability properties of solutions of the differential system which represents the considered model for the Belousov - Zhabotinskij reaction are studied in this paper. The existence of oscillatory solutions of this system is proved and a theorem on separation of zero-points of the components of such solutions is established. It is also shown that there exists a periodic solution. (English)
Keyword: oscillatory solutions
Keyword: oscillating oxidation reaction
Keyword: stability properties
Keyword: periodic solution
Keyword: exponential asymptotically stable
Keyword: generalized Volterra equation
Keyword: conditionally stable
MSC: 34C15
MSC: 34C25
MSC: 34D20
MSC: 92A09
idZBL: Zbl 0405.34048
idMR: MR0495430
DOI: 10.21136/AM.1978.103753
.
Date available: 2008-05-20T18:09:52Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103753
.
Reference: [1] E. A. Coddington N. Levison: Theory of Ordinary Differential Equations.McGraw Hill Book Co., Inc., New York-Toronto-London 1955. MR 0069338
Reference: [2] J. Cronin: Periodic Solutions in n Dimensions and Volterra Equations.J. Differential Equations 19 (1975), 21-35. Zbl 0278.34033, MR 0397090, 10.1016/0022-0396(75)90015-7
Reference: [3] P. Hartman: Ordinary Differential Equations.(Russian Translation), Izdat. Mir, Moskva 1970. Zbl 0214.09101, MR 0352574
Reference: [4] I. D. Hsū: Existence of Periodic Solutions for the Belousov-Zaikin-Zhabotinskij Reaction by a Theorem of Hopf.J. Differential Equations 20 (1976), 399-403. MR 0457858, 10.1016/0022-0396(76)90116-9
Reference: [5] H. W. Knobloch F. Kappel: Gewöhnliche Differentialgleichungen.B. G. Teubner, Stuttgart, 1974. MR 0591708
Reference: [6] Л. С. Понтрягин: Обыкновенные диференциальные уравнения.Издат. Наука, Москва 1970. Zbl 1107.83313
Reference: [7] G. Weisbuch J. Salomon, H. Atlan: Analyse algébrique de la stabilité d'un système à trois composants tiré de la réaction de Jabotinski.J. de Chimie Physique, 72 (1975), 71 - 77. 10.1051/jcp/1975720071
.

Files

Files Size Format View
AplMat_23-1978-4_5.pdf 2.052Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo