Previous |  Up |  Next

Article

Title: Orthoexponential polynomials and the Legendre polynomials (English)
Author: Jaroch, Otakar
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 23
Issue: 6
Year: 1978
Pages: 467-471
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: Orthoexponential polynomials can be expressed in terms of the Legendre polynomials. The formulae proved in this paper are useful for the computation of the values of orthoexponential polynomials. It is also possible to re-state, for orthoexponential polynomials, some theorems from the theory of classical orthogonal polynomials. (English)
Keyword: orthoexponential polynomials
Keyword: Legendre polynomials
Keyword: classical orthogonal polynomials
MSC: 33C45
idZBL: Zbl 0429.33009
idMR: MR0508548
DOI: 10.21136/AM.1978.103772
.
Date available: 2008-05-20T18:10:43Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103772
.
Reference: [1] H. Bateman A. Erdélyi: Higher Transcendental Functions, Vol. 2.McGraw-Hill, New York 1953. MR 0058756
Reference: [2] V. Čížek: Methods of Time Domain Synthesis.Research Report Z-44, Czechoslovak Academy of Sciences, Institute of Radioelectronics, Praha, 1960 (in Czech).
Reference: [3] R. Courant D. Hilbert: Methoden der mathematischen Physik, Vol. 1.Berlin, 1931 (Russian translation: GITTL, 1951).
Reference: [4] A. A. Dmitriyev: Orthogonal Exponential Functions in Hydrometeorology.Gidrometeoizdat, Leningrad, 1973 (in Russian).
Reference: [5] O. Jaroch: A Method of Numerical Inversion of Laplace Transforms.Práce ČVUT, Series VI, No. 1, Part I, pp. 332-339. Czech Technical University, Prague 1961 (in Czech).
Reference: [6] O. Jaroch: Approximation by Exponential Functions.Aplikace matematiky, Vol. 7, No. 4, pp. 249-264, 1962 (in Czech). Zbl 0112.08003, MR 0158211
Reference: [7] O. Jaroch J. Novotný: Recurrence Relations for Orthogonal Exponential Polynomials and their Derivatives.Acta Polytechnica- Práce ČVUT, Vol. IV (1973), pp. 39-42 (in Czech).
Reference: [8] J. H. Laning R. H. Battin: Random Processes in Automatic Control.McGraw-Hill, New York, 1956. MR 0079362
Reference: [9] G. Szegö: Orthogonal Polynomials.American Mathematical Society, New York, 1959. MR 0106295
Reference: [10] D. F. Tuttle: Network Synthesis for Prescribed Transient Response.Massachusetts Institute of Technology, 1949, DSc. Thesis.
.

Files

Files Size Format View
AplMat_23-1978-6_6.pdf 819.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo