Previous |  Up |  Next

Article

Title: On the computational complexity of centers locating in a graph (English)
Author: Plesník, Ján
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 25
Issue: 6
Year: 1980
Pages: 445-452
Summary lang: English
Summary lang: Slovak
Summary lang: Russian
.
Category: math
.
Summary: It is shown that the problem of finding a minimum $k$-basis, the $n$-center problem, and the $p$-median problem are $NP$-complete even in the case of such communication networks as planar graphs with maximum degree 3. Moreover, a near optimal $m$-center problem is also $NP$-complete. (English)
Keyword: $p$-median problem
Keyword: $NP$-complete
Keyword: communication networks
Keyword: $m$-center problem
MSC: 68C25
MSC: 68E10
MSC: 68Q25
MSC: 68R10
MSC: 90B05
MSC: 94C15
idZBL: Zbl 0454.68026
idMR: MR0596851
DOI: 10.21136/AM.1980.103883
.
Date available: 2008-05-20T18:15:41Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103883
.
Reference: [1] N. Christofides: Graph theory- an algorithmic approach.Academic Press, New York 1975. Zbl 0321.94011, MR 0429612
Reference: [2] H. Frank I. T. Frisch: Communication, transmission, and transportation networks.Addison-Wesley, Reading 1971. MR 0347343
Reference: [3] M. R. Garey R. L. Graham D. S. Johnson: Some NP-complete geometric problems.Proc. of the 8-th ACM Symposium on Theory of computing. 1976, pp. 10-22. MR 0468310
Reference: [4] M. R. Garey D. S. Johnson: The complexity of near-optimal graph coloring.J. Assoc. Соmр. Mach. 23 (1976), 43-49. MR 0426496, 10.1145/321921.321926
Reference: [5] M. R. Garey D. S. Johnson: The rectilinear Steiner tree problem is NP-complete.SIAM J. Appl. Math. 32 (1977), 826-834. MR 0443426, 10.1137/0132071
Reference: [6] M. R. Garey D. S. Johnson L. Stockmeyer: Some simplified NP-complete graph problems.Theoretical Comput. Sci. 1 (1976), 237-267. MR 0411240, 10.1016/0304-3975(76)90059-1
Reference: [7] M. R. Garey D. S. Johnson R. E. Tarjan: The planar hamiltonian circuit problem is NP-complete.SIAM J. Comput. 5 (1976), 704-714. MR 0444516, 10.1137/0205049
Reference: [8] S. L. Hakimi: Optimum locations of switching centers and the absolute centers and medians of a graph.Operations Res. 12 (1964), 450-459. Zbl 0123.00305, 10.1287/opre.12.3.450
Reference: [9] S. L. Hakimi: Optimum distribution of switching centers in a communications network and some related graph theoretic problems.Operations Res. 13 (1965), 462-475. MR 0186497, 10.1287/opre.13.3.462
Reference: [10] S. L. Hakimi E. F. Schmeichel J. G. Pierce: Оn p-centers in networks.Transportation Sci. 12 (1978), 1 - 15. MR 0506674, 10.1287/trsc.12.1.1
Reference: [11] R. M. Karp: On the computational complexity of combinatorial problems.Networks 5 (1975), 45-68. Zbl 0324.05003, 10.1002/net.1975.5.1.45
Reference: [12] M. Koman: Solution of one variant of the location problem by the graph theory.(Czech). Matematika (geometrie a teorie grafů). Sborník Pedagogické fakulty University Karlovy, Prague 1970, 93-103. MR 0278712
Reference: [13] E. Minieka: The centers and medians of a graph.Operations Res. 25 (1977), 641 - 650. Zbl 0383.90046, MR 0524906, 10.1287/opre.25.4.641
Reference: [14] S. C. Narula U. I. Оgbu H. M. Samuelsson: An algorithm for the p-median problem.Operations Res. 25 (1977), 709-713. MR 0446532, 10.1287/opre.25.4.709
Reference: [15] S. Sahni T. Gonzales: P-complete approximation problems.J. Assoc. Соmр. Mach. 23 (1976), 555-565. MR 0408313, 10.1145/321958.321975
Reference: [16] P. J. Slater: R-domination in graphs.J. Assoc. Сотр. Mach. 23 (1976), 445-450. Zbl 0349.05120, MR 0449602
.

Files

Files Size Format View
AplMat_25-1980-6_8.pdf 1.086Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo