Previous |  Up |  Next

Article

Title: A geometrical method in combinatorial complexity (English)
Author: Morávek, Jaroslav
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 26
Issue: 2
Year: 1981
Pages: 82-96
Summary lang: English
Summary lang: Czech
.
Category: math
.
Summary: A lower bound for the number of comparisons is obtained, required by a computational problem of classification of an arbitrarily chosen point of the Euclidean space with respect to a given finite family of polyhedral (non-convex, in general) sets, covering the space. This lower bound depends, roughly speaking, on the minimum number of convex parts, into which one can decompose these polyhedral sets. The lower bound is then applied to the knapsack problem. (English)
Keyword: lower bound for the number of comparisons
Keyword: knapsack problem
Keyword: decomposition of polyhedral sets into convex sets
MSC: 52A37
MSC: 68C25
MSC: 68Q25
MSC: 90C10
idZBL: Zbl 0454.68028
idMR: MR0612666
DOI: 10.21136/AM.1981.103900
.
Date available: 2008-05-20T18:16:25Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103900
.
Reference: [1] J. Morávek: On the Complexity of Discrete Programming Problems.The talk on the 6th International Symposium on Mathematical Programming, Princeton University 1967.
Reference: [2] J. Morávek: On the Complexity of Discrete Programming Problems.Aplikace Matematiky, 14 (1969), pp. 442-474. MR 0253745
Reference: [3] J. Morávek: A Note upon Minimal Path Problem.Journal of Math. Analysis and Appl., 30 (1970) 3, pp. 702-717. MR 0278984, 10.1016/0022-247X(70)90154-X
Reference: [4] J. Morávek: A Localization Problem in Geometry and Complexity of Discrete Programming.Kybernetika, 8 (1972) 6, pp. 498-516. MR 0395873
Reference: [5] S. Muroga: Threshold Logic and Its Applications.John Wiley & Sons, New York, London, Sydney, 1971. Zbl 0243.94014, MR 0439441
Reference: [6] D. Dobkin, R. J. Lipton: A Lower Bound of $\frac{1}{2} n^2$ on Linear Search Programs for the Knapsack Problem.Mathematical Foundations of Computer Science 1976, Gdansk, published in Lecture Notes in Computer Science 45, 1976.
Reference: [7] J. L. Kelley: General Topology.Van Nostrand Reinhold Company, 1955. Zbl 0066.16604, MR 0070144
Reference: [8] R. M. Karp: Reducibility among Combinatorial Problems.Complexity of Computer Computations, Proceedings, Plenum Press 1972. Editors: R. E. Miller, J. W. Thatcher. MR 0378476, 10.1007/978-1-4684-2001-2_9
Reference: [9] S. S. Kislicyn: On the Selection of the k-th Element of an Ordered Set by Pairwise Comparisons.(Russian), Sibirsk. Mat. Zh., Vol. 5, pp. 557-564. MR 0164907
Reference: [10] M. Blum R. W. Floyd V. Pratt R. Rivest, R. Tarjan: Time Bounds for Selection.JCSS 7 (1973), pp. 448-461. MR 0329916
Reference: [11] J. Pohl: A Sorting Problem and Its Complexity.Communications of ACM, 15 (1972) 6, pp. 462-466. Zbl 0234.68020, 10.1145/361405.361423
Reference: [12] R. E. Bellman: Dynamic Programming Treatment of the Travelling Salesman Problem.J. Assoc. for Соmр. Mach. 9 (1962), pp. 61-63. Zbl 0106.14102, MR 0135702, 10.1145/321105.321111
Reference: [13] M. Held, R. M. Karp: A Dynamic Programming Approach to Sequencing Problems.J. Soc. Ind. and Appl. Math. 10 (1962) 1. Zbl 0106.14103, MR 0139493, 10.1137/0110015
Reference: [14] А. А. Корбут Ю. Ю. Финкелъштейи: Дискретное программирование.Москва, Наука 1969. Zbl 1231.90028
Reference: [15] R. О. Winder: Bounds of Threshold Gate Realizability.TRNS IEEE EC 12 (1963).
Reference: [16] S. Yajima, T. Ibaraki: A Lower Bound of the Number of Threshold Functions.TRNS IEEE EC 14 (1965) 6. Zbl 0197.43606
Reference: [17] M. Block, J. Morávek: Bounds of the Number of Threshold Functions.Informations Processing Machines, 13 (1967), pp. 67-73.
Reference: [18] D. Dobkin, R. J. Lipton: A Lower Bound of $\frac{1}{2} n^2$ on Linear Search Programs for the Knapsack Problem.JCSS, 16 (1978) 3, pp. 413-417. MR 0496639
.

Files

Files Size Format View
AplMat_26-1981-2_3.pdf 1.581Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo