Previous |  Up |  Next

Article

Title: On numerical integration of implicit ordinary differential equations (English)
Author: Jackiewicz, Zdzisław
Author: Kwapisz, Marian
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 26
Issue: 2
Year: 1981
Pages: 97-110
Summary lang: English
Summary lang: Czech
.
Category: math
.
Summary: In this paper it is shown how the numerical methods for ordinary differential equations can be adapted to implicit ordinary differential equations. The resulting methods are of the same order as the corresponding methods for ordinary differential equations. The convergence theorem is proved and some numerical examples are given. (English)
Keyword: nonstationary quasilinear multistep methods
Keyword: implicit ordinary differential equations
Keyword: convergence theorem
Keyword: numerical examples
MSC: 65J15
MSC: 65L05
idZBL: Zbl 0469.65058
idMR: MR0612667
DOI: 10.21136/AM.1981.103901
.
Date available: 2008-05-20T18:16:28Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103901
.
Reference: [1] W. H. Enright: Second derivative multistep methods for stiff ordinary differential equations.SIAM J. Numer. Anal. 11, (1974), 321-331. MR 0351083, 10.1137/0711029
Reference: [2] P. Hartman: Ordinary Differential Equations.New York-London-Sydney: J. Wiley 1964. Zbl 0125.32102, MR 0171038
Reference: [3] P. Henrici: Discrete Variable Methods in Ordinary Differential Equations.New York: J. Wiley 1968. MR 0135729
Reference: [4] Z. Jackiewicz M. Kwapisz: On the convergence of multistep methods for the Cauchy problem for ordinary differential equations.Computing 20, (1978), 351 - 361. MR 0619909, 10.1007/BF02252383
Reference: [5] M. Kwapisz: On the existence and uniqueness of solutions of a certain integral-functional equation.Ann. Polon. Math. 31, (1975), 23 - 41. MR 0380329, 10.4064/ap-31-1-23-41
Reference: [6] J. D. Lambert: Computational Methods in Ordinary Differential Equations.London-New York: J. Wiley 1973. Zbl 0258.65069, MR 0423815
Reference: [7] L. Lapidus J. H. Seifeld: Numerical Solution of Ordinary Differential Equations.London - New York: Academic Press 1971. MR 0281355
Reference: 18] J. D. Mamiedow: Approximate Methods of Solution of Ordinary Differential Equations.(in Russian). Baku: Maarif 1974.
Reference: [9] D. I. Martinjuk: Lecture on Qualitative Theory of Difference Equations.(in Russian). Kiev: Naukova Dumka 1972. MR 0611163, 10.1093/comjnl/5.4.329
Reference: [10] H. H. Rosenbrock: Some general implicit processes for the numerical solution of differential equations.Comput. J. 5 (1963), 329-330. Zbl 0112.07805, MR 0155434
.

Files

Files Size Format View
AplMat_26-1981-2_4.pdf 1.562Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo