Previous |  Up |  Next

Article

Keywords:
induction method; regula falsi; $p$-dimensional rate of convergence; secant method; iterative procedure
Summary:
In this paper we introduce the notion of "$p$-dimensional rate of convergence" which generalizes the notion of rate of convergence introduced by V. Pták. Using this notion we give a generalization of the Induction Theorem of V. Pták, which may constitute a basis for the study of the iterative procedures of the form $X_{n+1}=F(x_{n-p+1},X_{n-p+2},\ldots, x_n)$, $n=0,1,2,\ldots$. As an illustration we apply these results to the study of the convergence of the secant method, obtaining sharp estimates for the errors at each step of the iterative procedure.
References:
[1] M. Balazs G. Goldner: On existence of divided differences in linear spaces. Revue d'analyse numérique et de la théorie de l'approximation, 2 (1973), 5-9. MR 0378398
[2] M. Fréchet: La notion de differentielle dans l'analyse générale. Ann. Ec. Norm. Sup, 42, (1925) 293-323. MR 1509268
[3] T. Popoviciu: Introduction à Ia théorie des differences divisées. Bull. Math. Soc. Roum. Sci., 42 (1941), 65-78. MR 0013171
[4] V. Pták: The rate of convergence of Newton's process. Numer. Math., 25 (1976), 279 - 285. DOI 10.1007/BF01399416 | MR 0478587 | Zbl 0304.65037
[5] V. Pták: Nondiscrete mathematical induction and iterative existence proofs. Linear algebra and its applications 13 (1976), 233 - 238. MR 0394119
[6] V. Pták: What should be a rate of convergence?. R. A.I. R. O. , Analyse Numérique 11,3 (1977), 279-286. MR 0474799
[7] J. Schmidt: Eine Übertragung der Regula Falsi auf Gleichungen in Banachraum. I, II, Z. Angew. Math. Mech., 43 (1963), p. 1-8, 97-11.0. DOI 10.1002/zamm.19630430102 | MR 0147930
[8] J. Schröder: Nichtlineare Majoranten beim Verfahren der schrittweissen Näherung. Arch. Math. (Basel) 7 (1956), 471-484. DOI 10.1007/BF01899031 | MR 0088047
[9] А. С. Сергеев: О метоге хорд. Сибир. Матем. Ж. 2 (1961), 282-289. MR 0130517 | Zbl 1160.68305
[10] С. Улъм: Об обобщенных разделенных разностях. I, II И АН ЭССР, Физика, математика, 16 (1967) р. 13-26, 146-156. MR 0215489 | Zbl 1103.35360
Partner of
EuDML logo