Previous |  Up |  Next

Article

Title: Roundoff errors in the fast computation of discrete convolutions (English)
Author: Segeth, Karel
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 26
Issue: 4
Year: 1981
Pages: 241-262
Summary lang: English
Summary lang: Czech
.
Category: math
.
Summary: The efficient evaluation of a discrete convolution is usually carried out as a repated evaluation of a discrete convolution of a special type with the help of the fast Fourier transform. The paper is concerned with the analysis of the roundoff errors in the fast computation of this convolution. To obtain a comparison, the roundoff errors in the usual (direct) computation of this convolution are also considered. A stochastic model of the propagation of roundoff errors. is employed. The theoretical results are compared with the actual roundoff errors is employed. The theoretical results are compared with the actual roundoff errors occurring in the evaluation of a simple model discrete convolution. (English)
Keyword: discrete convolution
Keyword: fast Fourier transform
Keyword: analysis of the roundoff errors
Keyword: stochastic model
MSC: 42A15
MSC: 65F30
MSC: 65T05
MSC: 65T40
idZBL: Zbl 0474.65025
idMR: MR0623505
DOI: 10.21136/AM.1981.103916
.
Date available: 2008-05-20T18:17:08Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103916
.
Reference: [1] R. Alt: Error propagation in Fourier transforms.Math. Comput. Simulation 20 (1978), 37-43. Zbl 0386.65057, MR 0488922, 10.1016/0378-4754(78)90052-6
Reference: [2] J. W. Cooley J. W. Tukey: An algorithm for the machine calculation of complex Fourier series.Math. Соmр. 19 (1965), 297-301. MR 0178586
Reference: [3] P. J. Davis P. Rabinowitz: Methods of Numerical Integration.Academic Press, New York 1975. MR 0448814
Reference: [4] R. W. Hamming: Numerical Methods for Scientists and Engineers.McGraw-Hill, New York 1962. Zbl 0952.65500, MR 0351023
Reference: [5] D. R. Hartree: Note on systematic roundoff errors in numerical integration.J. Res. Nat. Bur. Standards 42 (1949), 62. MR 0032215
Reference: [6] H. D. Helms: Fast Fourier transform method of computing difference equations and simulating filters.IEEE Trans. Audio Electroacoust. AU-15 (1967), 85-90. 10.1109/TAU.1967.1161905
Reference: [7] P. Henrici: Elements of Numerical Analysis.Wiley, New York 1964. Zbl 0149.10901, MR 0166900
Reference: [8] H. D. Huskey: On the precision of a certain procedure of numerical integration.J. Res. Nat. Bur. Standards 42 (1949), 57-62. MR 0032215, 10.6028/jres.042.005
Reference: [9] L. Jolley: Summation of Series.Chapman and Hall, London 1925.
Reference: [10] T. Kaneko B. Liu: Accumulation of round-off error in fast Fourier transforms.J. Assoc. Comput. Mach. 17 (1970), 637-654. MR 0275710, 10.1145/321607.321613
Reference: [11] T. Kaneko B. Liu: On local roundoff errors in floating-point arithmetic.J. Assoc. Comput. Mach. 20 (1973), 391-398. MR 0343577, 10.1145/321765.321771
Reference: [12] G. U. Ramos: Roundoff error analysis of the fast Fourier transform.Math. Соmр. 25 (1971), 757-768., Zbl 0227.65068, MR 0300488
Reference: [13] P. H. Sterbenz: Floating-Point Computation.Prentics-Hall, Englewood Cliffs, N. J., 1974. MR 0349062
Reference: [14] : System/360 Scientific Subroutine Package.IBM Corporation, White Plains, N. Y., 1910.
Reference: [15] T. Thong B. Liu: Accumulation of roundoff errors in floating point FFT.IEEE Trans. Circuits and Systems 24 (1977), 132-143. MR 0428702, 10.1109/TCS.1977.1084316
Reference: [16] T. Thong B. Liu: Floating point fast Fourier transform computation using double precision floating point accumulators.ACM Trans. Math. Software 3 (1977), 54-59. MR 0438752, 10.1145/355719.355723
Reference: [17] J. H. Wilkinson: Rounding Errors in Algebraic Processes.HMSO, London 1963. Zbl 1041.65502, MR 0161456
.

Files

Files Size Format View
AplMat_26-1981-4_2.pdf 2.727Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo