Previous |  Up |  Next

Article

Title: Contact between elastic bodies. II. Finite element analysis (English)
Author: Haslinger, Jaroslav
Author: Hlaváček, Ivan
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 26
Issue: 4
Year: 1981
Pages: 263-290
Summary lang: English
Summary lang: Czech
.
Category: math
.
Summary: The paper deals with the approximation of contact problems of two elastic bodies by finite element method. Using piecewise linear finite elements, some error estimates are derived, assuming that the exact solution is sufficiently smooth. If the solution is not regular, the convergence itself is proven. This analysis is given for two types of contact problems: with a bounded contact zone and with enlarging contact zone. (English)
Keyword: piecewise linear elements
Keyword: error estimate
Keyword: exact solution sufficiently smooth
Keyword: solution not regular
Keyword: convergence
MSC: 49A29
MSC: 49J40
MSC: 49M15
MSC: 65N15
MSC: 65N30
MSC: 73K25
MSC: 73T05
MSC: 74A55
MSC: 74M15
MSC: 74S05
idZBL: Zbl 0465.73144
idMR: MR0623506
DOI: 10.21136/AM.1981.103917
.
Date available: 2008-05-20T18:17:11Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103917
.
Reference: [1] J. Haslinger I. Hlaváček: Contact between elastic bodies. Part I. Continuous problems.Apl. Mat. 25 (1980), 324-348. MR 0590487
Reference: [2] J. Céa: Optimisation, théorie et algorithmes.Dunod, Paris 1971. MR 0298892
Reference: [3] M. Zlámal: Curved elements in the finite element method.SIAM J. Numer. Anal. 10, (1973), 229-240. MR 0395263, 10.1137/0710022
Reference: [4] G. Strang G. Fix: An analysis of the finite element method.Prentice-Hall, 1973. MR 0443377
Reference: [5] J. Nitsche: Über ein Variationsprinzip zur Lösung von Dirichlet-Problem bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind.Abh. Math. Sem. Univ. Hamburg, 36 (1971), 9-15. MR 0341903, 10.1007/BF02995904
Reference: [6] I. Hlaváček J. Lovíšek: Finite element analysis of the Signorini problem in semi-coercive cases.Apl. Mat. 25 (1980), 274-285. MR 0583588
Reference: [7] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [8] J. Haslinger: Finite element analysis for unilateral problems with obstacles on the boundary.Apl. Mat. 22(1977), 180-187. Zbl 0434.65083, MR 0440956
Reference: [9] F. Brezzi W. W. Hager P. A. Raviart: Error estimates for the finite element solution of variational inequalities. Part I. Primal Theory.Numer. Math. 28 (1977), 431 - 443. MR 0448949, 10.1007/BF01404345
.

Files

Files Size Format View
AplMat_26-1981-4_3.pdf 3.367Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo