Previous |  Up |  Next

Article

Title: Nonlinear elliptic problems with jumping nonlinearities near the first eigenvalue (English)
Author: Drábek, Pavel
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 26
Issue: 4
Year: 1981
Pages: 304-311
Summary lang: English
Summary lang: Czech
.
Category: math
.
Summary: In this paper existence and multiplicity of solutions of the elliptic problem $\Cal L u + \lambda_1u+\mu u^+vu^-+g(x,u)=f$ in $\Omega$ $Bu=0$ on $\partial\Omega$, are discussed provided the parameters $\mu$ and $v$ are close to the first eigenvalue $\lamda_1$. The sufficient conditions presented here are more general than those in given by S. Fučík in his aerlier paper. (English)
Keyword: multiplicity of solutions
Keyword: weakly nonlinear elliptic equations
MSC: 35J60
MSC: 47J05
MSC: 73C50
idZBL: Zbl 0469.35051
idMR: MR0623508
DOI: 10.21136/AM.1981.103919
.
Date available: 2008-05-20T18:17:17Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103919
.
Reference: [1] A. Ambrosetti G. Mancini: Existence and multiplicity results for nonlinear elliptic problems with linear part at resonance. The case of the simple eigenvalue.Journal of Diff. Eq., vol. 28, (1978), 220-245. MR 0492839, 10.1016/0022-0396(78)90068-2
Reference: [2] S. Fučík: Remarks on a result by A. Ambrosetti and G. Prodi.U.M.I., (4), 11 (1975), 259-267. MR 0382849
Reference: [3] M. A. Krasnoselskij: Topological methods in the theory of nonlinear integral equations.Pergamon Press, London, 1964.
Reference: [4] J. Minty: Monotone operators in Hilbert space.Duke Math. Journal 29 (1962), 341 - 346. MR 0169064, 10.1215/S0012-7094-62-02933-2
Reference: [5] A. N. Kolmogorov S. V. Fomin: Элементы теории функций и функционального анализа.Nauka, Moskva, 1972.
.

Files

Files Size Format View
AplMat_26-1981-4_5.pdf 1.016Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo