Previous |  Up |  Next

Article

Title: Duality in the obstacle and unilateral problem for the biharmonic operator (English)
Author: Lovíšek, Ján
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 26
Issue: 4
Year: 1981
Pages: 291-303
Summary lang: English
Summary lang: Slovak
.
Category: math
.
Summary: The paper presents a problem of duality for the obstacle and unilateral biharmonic problem (the equilibrium of a thin plate with an obstacle inside the domain or on the boundary). The dual variational inequality is derived by introducing polar functions. (English)
Keyword: obstacle and unilateral problem
Keyword: biharmonic operator
Keyword: dual variational inequality
Keyword: polar functions
MSC: 31A30
MSC: 35J35
MSC: 35J85
MSC: 49A29
MSC: 49J40
MSC: 73K10
MSC: 74K20
idZBL: Zbl 0468.49005
idMR: MR0623507
DOI: 10.21136/AM.1981.103918
.
Date available: 2008-05-20T18:17:14Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103918
.
Reference: [1] J. Cea: Optimisation, théorie et algorithmes.Dunod Paris, 1971. Zbl 0211.17402, MR 0298892
Reference: [2] R. Glowinski J. L. Lions, Trémolièrs: Analyse numérique des inéquations variationnelles.Tome 1, 2, Dunod Paris, 1976. MR 0655454
Reference: [3] I. Ekeland R. Temam: Analyse convexe et problèmes variationnels.Dunod Paris, 1974. MR 0463993
Reference: [4] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéairs.Dunod Paris, 1969. MR 0259693
Reference: [5] V. Mosco: Dual variational inequalities.Jour. of Math., Anal. and Appl. 40, 202-206 (1972). Zbl 0262.49003, MR 0313913, 10.1016/0022-247X(72)90043-1
Reference: [6] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia Prague, 1967. MR 0227584
.

Files

Files Size Format View
AplMat_26-1981-4_4.pdf 1.576Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo