Previous |  Up |  Next

Article

Title: Construction of explicit and generalized Runge-Kutta formulas of arbitrary order with rational parameters (English)
Author: Huťa, Anton
Author: Strehmel, Karl
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 27
Issue: 4
Year: 1982
Pages: 259-276
Summary lang: English
Summary lang: Slovak
Summary lang: Russian
.
Category: math
.
Summary: In the article containing the algorithm of explicit generalized Runge-Kutta formulas of arbitrary order with rational parameters two problems occuring in the solution of ordinary differential equaitions are investigated, namely the determination of rational coefficients and the derivation of the adaptive Runge-Kutta method. By introducing suitable substitutions into the nonlinear system of condition equations one obtains a system of linear equations, which has rational roots. The introduction of suitable symbols enables the authors to generalize the Runge-Kutta formulas. The starting point for the construction of adaptive R. K. method was the consistent $s$-stage R. K. formula. Finally, the S-stability of the ARK method is investigated. (English)
Keyword: explicit Runge-Kutta methods
Keyword: ARK methods
Keyword: S-stable
Keyword: LS-stable
MSC: 65L05
MSC: 65L20
idZBL: Zbl 0541.65047
idMR: MR0666905
DOI: 10.21136/AM.1982.103971
.
Date available: 2008-05-20T18:19:38Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103971
.
Reference: [1] J. C. Butcher: Implicit Runge-Kutta processes.Math. Соmр. 18, 50 (1964). Zbl 0123.11701, MR 0159424
Reference: [2] A. R. Curtis: An eight order Runge-Kutta process with eleven function evaluations per step.Numer. Math. 16, 268-277 (1970). MR 0270556, 10.1007/BF02219778
Reference: [3] G. Dahlquist: A special stability problem for linear multistep methods.BIT 3, 27-43 (1963). Zbl 0123.11703, MR 0170477, 10.1007/BF01963532
Reference: [4] B. L. Ehle, J. D. Lawson: Generalized Runge-Kutta processes for stiff initial-value problems.J. Inst. Math. Appl. 16, No. 1, 11-21 (1975). Zbl 0308.65046, MR 0391524, 10.1093/imamat/16.1.11
Reference: [5] A. Friedli: Verallgemeinertes Runge-Kutta-Verfahren zur Lösung steifer Differentialgleichungssysteme.Lect. Notes Math. 631, 35 - 50 (1978). MR 0494950, 10.1007/BFb0067462
Reference: [6] P. J. van der Houwen: Construction of integration formulas for initial value problems.Amsterdam: North Holland Publishing Company 1976.
Reference: [7] A. Huťa: The algorithm for computation of the n-th order formula for numerical solution of initial value problem of differential equations.5th Symposium on Algorithms, 53 - 61, (І979).
Reference: [8] J. D. Lawson: Generalized Runge-Kutta processes for stable systems with large Lipschitz constants.SIAM J. Numer. Anal., Vol. 4, No. 3, 372-380 (1967). Zbl 0223.65030, MR 0221759, 10.1137/0704033
Reference: [9] K. Nickel, P. Rieder: Ein neues Runge-Kutta ähnliches Verfahren.In: ISNM 9, Numerische Mathematik, Differentialgleichungen, Approximationstheorie, 83 - 96, Basel: Birkhäuser 1968. Zbl 0174.47304, MR 0266436
Reference: [10] E. J. Nyström: Über die numerische Integration von Differentialgleichungen.Acta Soc. Sci. Fennicae, Tom 50, nr. 13, 1-55 (1925).
Reference: [11] A. Prothero, A. Robinson: On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations.Math. Соmр. 28, 145-162 (1974). Zbl 0309.65034, MR 0331793
Reference: [12] K. Strehmel: Konstruktion von adaptiven Runge-Kutta-Methoden.ZAMM, to appear 1980.
Reference: [13] J. G. Verwer: S-stability properties for generalized Runge-Kutta methods.Numer. Math. 27,359-370(1977). Zbl 0336.65036, MR 0438722
Reference: [14] J. G. Verwer: Internal S-stability for generalized Runge-Kutta methods.Report NW 21, Mathematisch Centrum, Amsterdam (1975). Zbl 0319.65044
.

Files

Files Size Format View
AplMat_27-1982-4_5.pdf 2.904Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo