Previous |  Up |  Next

Article

Title: On coupled thermoelastic vibration of geometrically nonlinear thin plates satisfying generalized mechanical and thermal conditions on the boundary and on the surface (English)
Author: Wenk, Hans-Ullrich
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 27
Issue: 6
Year: 1982
Pages: 393-416
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: The vibration problem in two variables is derived from the spatial situation (a plate as a three-dimensional body) on the basis of geometrically nonlinear plate theory (using Kármán's hypothesis) and coupled linear thermoelasticity. That leads to coupled strongly nonlinear two-dimensional equilibrium and heat conducting equations (under classical mechanical and thermal boundary conditions). For the generalized problem with subgradient conditions on the boundary and in the domain (including also classical conditions), existence and dependence of the weak variational solution on the given data is proved. (English)
Keyword: nonlinear dynamical
Keyword: kinematical
Keyword: linear constitutive thermoelastic
Keyword: coupled heat conduction equations
Keyword: spatial problem
Keyword: Kirchhoff’s and von Kármán’s hypothesis
Keyword: twodimensional equations
Keyword: generalized problem with subgradient conditions on boundary
Keyword: existence of solution
Keyword: continuous dependence on given data
MSC: 35K05
MSC: 49J40
MSC: 73K10
MSC: 73U05
MSC: 74A15
MSC: 74F05
MSC: 74H45
MSC: 74K20
MSC: 74S05
MSC: 80A20
idZBL: Zbl 0506.73012
idMR: MR0678110
DOI: 10.21136/AM.1982.103987
.
Date available: 2008-05-20T18:20:21Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103987
.
Reference: [1] B. A. Boley J. H. Weiner: Theory of Thernal Stresses.Wiley & Sons, Inc., New York 1960. MR 0112414
Reference: [2] C. Dafermos: On the Existence and the Asymptotic Stability of Solutions to the Equations of Linear Thermoelasticity.Arch. Rat. Mech. Anal., 29 (1968), 241 - 271. Zbl 0183.37701, MR 0233539, 10.1007/BF00276727
Reference: [3] G. Duvaut J. L. Lions: Problèmes unilateraux dans la théorie de la flexion forte des plaques, I: Le cas stationaire.J. Méch., 13 (1974), 51 - 74. MR 0375885
Reference: [4] G. Duvaut J. L. Lions: Problèmes unilateraux dans la théorie de la flexion forte des plaques, II: Le cas d'évolution.J. Méch., 13 (1974), 245-266. MR 0375886
Reference: [5] G. Duvaut: Inéquations en thermoélasticité et magnétohydrodynamique.Arch. Rat. Mech. Anal., 46 (1972), 241-279. Zbl 0264.73027, MR 0346289, 10.1007/BF00250512
Reference: [6] G. Duvaut: Les inéquations en méchanique et en physique.Dunod, Paris 1972. MR 0464857
Reference: [7] S. A. Gribanov V. N. Ogibalov: Thermostability of Plates and Shells.(in Russian). Izd. Mosc. Univ. 1968.
Reference: [8] I. Hlaváček J. Naumann: Inhomogeneous Boundary Value Problems for the von Kármán's Equations, I.Apl. Matem., 19 (1974), 253 - 269. MR 0377307
Reference: [9] I. Hlaváček J. Naumann: Inhomogeneous Boundary Value Problems for the von Kármán's Equations, II.Apl. Matem., 20 (1975), 280-297. MR 0377308
Reference: [10] I. Hlaváček J. Nečas: On Inequalities of Korn's Type, I: Boundary value problems for elliptic systems of partial differential equations, II: Applications to linear elasticity.Arch. Rat. Mech. Anal., 36 (1970), 305-334. MR 0252844
Reference: [11] R. Hünlich J. Naumann: On General Boundary Value Problems and Duality in Linear Elasticity, I.Apl. Matem., 23 (1978). MR 0489538
Reference: [12] J. L. Lions E. Magénès: Problèmes aux limites non homogènes et applications.vol. 1. Dunod, Paris 1968. MR 0247243
Reference: [13] J. Naumann: On Some Unilateral Boundary Value Problems for the von Kármán's Equations, part I: The coercive case.Apl. Matem., 20 (1975), 96-125. MR 0437916
Reference: [14] J. Naumann: On Some Unilateral Boundary Value Problems in Non-linear Plate Theory.Beiträge zur Analysis, 10 (1977), 119-134. MR 0489204
Reference: [15] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague 1967. MR 0227584
Reference: [16] W. Nowacki: Theory of Elasticity.(in Russian). Mir, Moscow 1975. Zbl 0385.73007, MR 0436704
Reference: [17] W. Nowacki: Thermoelasticity.Intern. Series of Monographs on Aeronautics and Astronautics, Div. I: Solid and Structural Mechanics, Pergamon Press 1962.
Reference: [18] W. Nowacki: Dynamical Problems of Thermoelasticity.(in Russian). Mir, Moscow 1970.
Reference: [19] K. Washizu: Variational Methods in Elasticity and Plasticity.Pergamon Press 1974. MR 0391680
Reference: [20] H.-U. Wenk: Functional-analytical Investigations on Unilateral Problems in Plate Theory.(in German). Thesis A, Humboldt-Univ., Berlin 1978.
.

Files

Files Size Format View
AplMat_27-1982-6_2.pdf 3.613Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo