Previous |  Up |  Next

Article

Title: On the distributions of $R^+_{mn}(j)$ and $(D^+_{mn}, R^+_{mn}(j))$ (English)
Author: Saran, Jagdish
Author: Sen, Kanwar
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 27
Issue: 6
Year: 1982
Pages: 417-425
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: The contents of the paper is concerned with the two-sample problem where $F_m(x)$ and $G_n(x)$ are two empirical distribution functions. The difference $F_m(x)-G_n(x)$ changes only at an $x_i, i=1,2,\ldots, m+n$, corresponding to one of the observations. Let $R^+_{mn}(j)$ denote the subscript $i$ for which $F_m(x_i)-G_n(x_i)$ achieves its maximum value $D^+_{mn}$ for the $j$th time $(j=1,2,\ldots)$. The paper deals with the probabilities for $R^+_{mn}(j)$ and for the vector $(D^+_{mn}, R^+_{mn}(j))$ under $H_0 : F=G$, thus generalizing the results of Steck-Simmons (1973). These results have been derived by applying the random walk model. (English)
Keyword: points of maximal deviation
Keyword: two-sample Smirnov statistic
Keyword: empirical distribution functions
Keyword: joint distribution
Keyword: random walk model
MSC: 62E15
MSC: 62G10
MSC: 62G30
idZBL: Zbl 0514.62025
idMR: MR0678111
DOI: 10.21136/AM.1982.103988
.
Date available: 2008-05-20T18:20:25Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/103988
.
Reference: [1] M. T. L. Bizley: Derivation of a new formula for the number of minimal lattice paths from $(0, 0)$ to $(km, kn)$ having just t contacts with the line my = nx and having no points above this line; and a proof of Grossman's formula for the number of paths which may touch but do not rise above this line.J. Inst. Actuar. 80 (1954), 55-62. MR 0061567, 10.1017/S002026810005424X
Reference: [2] M. Dwass: Simple random walk and rank order statistics.Ann. Math. Statist. 38 (1967), 1042-1053. Zbl 0162.50204, MR 0215463, 10.1214/aoms/1177698773
Reference: [3] N. L. Geller: Two limiting distributions for two-sample Kolmogorov-Smirnov type statistics.Report No. 5, Centre for System Science, Case Western Reserve University, Cleveland, Ohio, (1971).
Reference: [4] I. Očka: Simple random walk and rank order statistics.Apl. mat. 22 (1977), 272-290. MR 0438583
Reference: [5] K. Sarkadi: On Galton's rank order test.Publ. Math. Inst. Hungar. Acad. Sci. 6 (1961), 125-128.
Reference: [6] Z. Šidák: Applications of Random Walks in Nonparametric Statistics.Bull. Internat. Statist. Inst., Proc. of the 39th session, vol. 45 (1973), book 3, 34-42. MR 0356357
Reference: [7] G. P. Steck: The Smirnov two-sample tests as rank tests.Ann. Math. Statist. 40 (1969), 1449-1466. Zbl 0186.52304, MR 0246473, 10.1214/aoms/1177697516
Reference: [8] G. P. Steck G. J. Simmons: On the distributions of $R_{mn}^+$ and $(D_{mn}^+, R_{mn}^+)$.Studia Sci. Math. Hung. 8(1973), 79-89. MR 0339374
Reference: [9] I. Vincze: Einige Zweidimensionale Verteilungs und Grenzverteilungssätze in der Theorie der geordneten Stichproben.Publ. Math. Inst. Hungar. Acad. Sci. 2 (1957), 183 - 209. MR 0105172
.

Files

Files Size Format View
AplMat_27-1982-6_3.pdf 1.276Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo