Previous |  Up |  Next

Article

Title: Unconditional stability of difference formulas (English)
Author: Roubíček, Tomáš
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 28
Issue: 2
Year: 1983
Pages: 81-90
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: The paper concerns the solution of partial differential equations of evolution type by the finite difference method. The author discusses the general assumptions on the original equation as well as its discretization, which guarantee that the difference scheme is unconditionally stable, i.e. stable without any stability condition for the time-step. A new notion of the $A_n$-acceptability of the integration formula is introduced and examples of such formulas are given. The results can be applied to ordinary differential equations as well. (English)
Keyword: unconditional stability
Keyword: complex Banach space
Keyword: finite difference method
Keyword: $k$-step formula
MSC: 34G10
MSC: 35G10
MSC: 35K25
MSC: 65J10
MSC: 65L05
MSC: 65M10
MSC: 65N12
idZBL: Zbl 0538.65032
idMR: MR0695181
DOI: 10.21136/AM.1983.104008
.
Date available: 2008-05-20T18:21:18Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104008
.
Reference: [1] I. Babuška M.Práger, E. Vitásek: Numerical Processes in Differential Equations.SNTL, Prague, 1966. Zbl 0156.16003, MR 0223101
Reference: [2] B. L. Ehle: A-stable Methods and Pade Approximations to the Exponential.SIAM J. Math. Anal., Vol. 4 (1973), No. 4, pp. 671-680. Zbl 0236.65016, MR 0331787, 10.1137/0504057
Reference: [3] A. Iserles: On the A-acceptability of Pade Approximations.SIAM J. Math. Anal., Vol. 10 (1979), No. 5, pp. 1002-1007. Zbl 0441.41010, MR 0541096, 10.1137/0510091
Reference: [4] E. Hille, R. S. Phillips: Functional Analysis and Semi-groups.Amer. Math. Soc., Vol. 31., rev. ed., Waverly Press, Baltimore, 1957. MR 0089373
.

Files

Files Size Format View
AplMat_28-1983-2_2.pdf 1.415Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo