Previous |  Up |  Next


Title: An analysis of a contact problem for a cylindrical shell: A primary and dual formulation (English)
Author: Bock, Igor
Author: Lovíšek, Ján
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 28
Issue: 6
Year: 1983
Pages: 408-429
Summary lang: English
Summary lang: Slovak
Summary lang: Russian
Category: math
Summary: In this paper the contact problem for a cylindrical shell and a stiff punch is studied. The existence and uniqueness of a solution is verified. The finite element method is discussed. (English)
Keyword: sequence converges strongly to solution
Keyword: existence
Keyword: frictionless
Keyword: linear elastic cylindrical shell
Keyword: rigid stamp
Keyword: no numerical applications
Keyword: governing relations
Keyword: weak form of the problem
Keyword: dual formulation
Keyword: saddle functional
Keyword: unique solution of the FE approximation exists
MSC: 49J40
MSC: 73T05
MSC: 74A55
MSC: 74B99
MSC: 74G30
MSC: 74H25
MSC: 74H99
MSC: 74K15
MSC: 74M15
MSC: 74S05
MSC: 74S30
idZBL: Zbl 0534.73091
idMR: MR0723202
DOI: 10.21136/AM.1983.104054
Date available: 2008-05-20T18:23:27Z
Last updated: 2020-07-28
Stable URL:
Reference: [1] J. Céa: Optimisation, Théorie et Algorithrnes.Dunod Paris, 1971. MR 0298892
Reference: [2] P. G. Ciarlet: The finite element method for elliptic problems.North-Holland 1978. Zbl 0383.65058, MR 0520174
Reference: [3] G. Duvaut J. L. Lions: Inequalities in mechanics and physics.Berlin, Springer Verlag 1975. MR 0521262
Reference: [4] R. Glowinski J. L. Lions R. Trémolieres: Numerical analysis of variational inequalities.North-Holland, Amsterdam, New York 1981. MR 0635927
Reference: [5] I. Ekeland R. Temam: Analyse convexe et problèmes variationnels.Dunod, Paris 1974. MR 0463993
Reference: [6] J. Haslinger I. Hlaváček: Contact between elastic bodies II. Finite element analysis.Apl. mat. 26, 1981, p. 263-290. MR 0623506
Reference: [7] I. Hlaváček J. Haslinger J. Nečas J. Lovíšek: Solution of variational inequalities in mechanics.(Slovak). ALFA-SNTL, 1982. MR 0755152
Reference: [8] I. Hlaváček J. Nečas: On inequalities of Korn's type.Arch. Rat. Mech. Anal., 36, 1970, 305-334. MR 0252844, 10.1007/BF00249518
Reference: [9] N. D. Hung G. de Saxcé: Finite element analysis of contact problems based on the unilateral constraints formulation.Structural Control. H.H.E. Leipholz (ed) IUTAM, 1980, p. 341-373.
Reference: [10] N. Kikuchi T. Oden: Contact problems in elasticity.SIAM, Philadelphia, 1981.
Reference: [11] N. Kikuchi Y. Joon Song: Penalty, finite-element approximations of a class of unilateral problems in linear elasticity.Quarterly of Appl. Math. Vol. XXXVIV No 1. April 1981. MR 0613950
Reference: [12] D. Kinderlehrer G. Stampacchia: An introduction to variational inequalities and their applications.Academic Press, 1980. MR 0567696
Reference: [13] A. C. Kravčuk: On Hertz's problem for linearly and nonlinearly elastic bodies of finite dimensions.(Russian). Prikladnaja matematika i mechanika, 1977, t. 41, No 2, s. 28-30. MR 0464840
Reference: [14] J. L. Lions: Quelques méthodes de résolution děs problèmes aux limites non linéaires.Dunod, Paris, 1969. Zbl 0189.40603, MR 0259693
Reference: [15] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia Praha, 1967. MR 0227584
Reference: [16] J. Nečas I. Hlaváček: Mathematical theory of elastic and elasto-plastic bodies: An introduction.Elsevier 1981. MR 0600655
Reference: [17] B. L. Pelech: Generalized theory of shells.(Russian). Lvov 1978.


Files Size Format View
AplMat_28-1983-6_3.pdf 2.673Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo