Previous |  Up |  Next

Article

Title: The finite element solution of second order elliptic problems with the Newton boundary condition (English)
Author: Čermák, Libor
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 28
Issue: 6
Year: 1983
Pages: 430-456
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: The convergence of the finite element solution for the second order elliptic problem in the $n$-dimensional bounded domain $(n\geq 2)$ with the Newton boundary condition is analysed. The simplicial isoparametric elements are used. The error estimates in both the $H^1$ and $L_2$ norms are obtained. (English)
Keyword: convergence
Keyword: finite element
Keyword: Newton boundary condition
Keyword: simplicial isoparametric elements
Keyword: error estimates
MSC: 35J25
MSC: 65N15
MSC: 65N30
idZBL: Zbl 0542.65063
idMR: MR0723203
DOI: 10.21136/AM.1983.104055
.
Date available: 2008-05-20T18:23:30Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104055
.
Reference: [1] P. G. Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland. Amsterdam. 1978. Zbl 0383.65058, MR 0520174
Reference: [2] P. G. Ciarlet P. A. Raviart: The combined effect of curved boundaries and numerical integration in isoparametric finite element methods.In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz Editor). Academic Press. New York and London. 1972. MR 0421108
Reference: [3] A. Kufner O. John S. Fučík: Function Spaces.Academia. Praha, 1977. MR 0482102
Reference: [4] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia. Prague. 1967. MR 0227584
Reference: [5] J. Nedoma: The finite element solution of parabolic equations.Apl. Mat., 23 (1977), 408-438. MR 0508545
Reference: [6] J. Nedoma: The finite element solution of elliptic and parabolic equations using simplicial isoparametric elements.R.A.I.R.O. Numer. Anal., 13 (1979), 257-289. Zbl 0413.65080, MR 0543935
Reference: [7] K. Rektorys: Variační metody.SNTL. Praha. 1974. English translation: Variational Methods. Reidel Co.. Dordrecht-Boston. 1977. Zbl 0371.35001, MR 0487653
Reference: [8] R. Scott: Interpolated boundary conditions in the finite element method.SIAM J. Numer. Anal., 12 (1975), 404-427. Zbl 0357.65082, MR 0386304, 10.1137/0712032
Reference: [9] G. Strang: Approximation in the finite element method.Numer. Math., 19 (1972), 81-98. Zbl 0221.65174, MR 0305547, 10.1007/BF01395933
Reference: [10] M. Zlámal: Curved elements in the finite element method I.SIAM J. Numer. Anal., 10 (1973), 229-240. MR 0395263, 10.1137/0710022
Reference: [11] M. Zlámal: Curved elements in the finite element method II.SIAM J. Numer. Anal., 11 (1974), 347-369. MR 0343660, 10.1137/0711031
Reference: [12] A. Ženíšek: Nonhomogeneous boundary conditions and curved triangular finite elements.Apl. Mat., 26 (1981), 121-141. MR 0612669
Reference: [13] A. Ženíšek: Discrete forms of Friedrichs' inequalities in the finite element method.R.A.I.R.O. Numer. Anal., 15 (1981), 265-286. Zbl 0475.65072, MR 0631681
.

Files

Files Size Format View
AplMat_28-1983-6_4.pdf 4.317Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo