Previous |  Up |  Next

Article

Title: A note on a discrete form of Friedrichs' inequality (English)
Author: Čermák, Libor
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 28
Issue: 6
Year: 1983
Pages: 457-466
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: The proof of the Friedrichs' inequality on the class of finite dimensional spaces used in the finite element method is given. In particular, the approximate spaces generated by simplicial isoparametric elements are considered. (English)
Keyword: finite element method
Keyword: simplicial isoparametric elements
Keyword: Friedrichs’ inequality
MSC: 35J25
MSC: 65N30
idZBL: Zbl 0537.65073
idMR: MR0723204
DOI: 10.21136/AM.1983.104056
.
Date available: 2008-05-20T18:23:33Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104056
.
Reference: [1] P. G. Ciarlet P. A. Raviart: The combined effect of curved boundaries and numerical integration in isoparametric finite element methods.In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz Editor). Academic Press. New York and London. 1972. MR 0421108
Reference: [2] L. Čermák: The finite element solution of second order elliptic problems with the Newton boundary condition.Apl. Mat., 28 (1983), 430-456. MR 0723203
Reference: [3] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia. Prague. 1967. MR 0227584
Reference: [4] K. Yosida: Functional Analysis.Springer-Verlag. Berlin-Heidelberg-New York. 1966.
Reference: [5] A. Ženíšek: Nonhomogeneous boundary conditions and curved triangular finite elements.Apl. Mat., 26 (1981), 121-141. MR 0612669
Reference: [6] A. Ženíšek: Discrete forms of Friedrichs' inequalities in the finite element method.R.A.LR.O Numer. Anal., 15 (1981), 265-286. Zbl 0475.65072, MR 0631681
.

Files

Files Size Format View
AplMat_28-1983-6_5.pdf 1.654Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo