Previous |  Up |  Next

Article

Title: Solutions of abstract hyperbolic equations by Rothe method. (English)
Author: Pultar, Milan
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 29
Issue: 1
Year: 1984
Pages: 23-39
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: In this paper abstract hyperbolic equations in which elliptic operator dependent on time is involved are solved by using the so callad Rothe method, i.e. the method of discretisation of given problem in time. Existence and unicity of solution and some of its properties in dependence on various conditions which the given equations satisfy are presented. ()
Keyword: abstract hyperbolic equations
Keyword: Rothe method
MSC: 34G10
MSC: 34G20
MSC: 35L15
MSC: 65M20
idZBL: Zbl 0575.65089
idMR: MR0729950
DOI: 10.21136/AM.1984.104065
.
Date available: 2008-05-20T18:23:55Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104065
.
Reference: [1] K. Rektorys: On application of direct variational methods to the solution of parabolic boundary value problems of arbitrary order in the space variables.Czech. Math. J. 21 (1971), pp. 318-339. Zbl 0217.41601, MR 0298237
Reference: [2] J. Kačur: Method of Rothe and nonlinear parabolic boundary value problems of arbitrary order.Czech. Math. J. 28 (1978), pp. 507-524. MR 0506431
Reference: [3] J. Kačur: Application of Rothe's method to nonlinear equations.Math. čas. 25 (1975), pp. 63-81. MR 0394344
Reference: [4] J. Kačur A. Wawruch: On an approximate solution for quasilinear parabolic eguations.Czech. Math. J. 27 (1977), pp. 220-241. MR 0605665
Reference: [5] J. Nečas: Application of Rothe's method to abstract parabolic equations.Czech. Math. J. 24 (1974), pp. 496-500. Zbl 0311.35059, MR 0348571
Reference: [6] M. Pultar: Nonlinear parabolic problems with maximal monotone operators solved by the method of discretization in time.Dissertation. (In Czech.)
Reference: [7] J. Streiblová: Solution of hyperbolic problems by the Rothe method.Habilitation. Bull. of the Faculty of Civil Engineering in Prague (To appear.)
Reference: [8] F. Bubeník: A note to the solution of hyperbolic problems by the Rothe method.Dissertation. Bull, of the Faculty of Civil Engineering in Prague. (To appear.)
Reference: [9] E. Rothe: Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben.Math. Ann. 102, 1930. MR 1512599, 10.1007/BF01782368
Reference: [10] J. Lions L. Magenes: Problèmes aux limites non homogènes et applications.Dunod, Paris, 1968.
.

Files

Files Size Format View
AplMat_29-1984-1_5.pdf 1.819Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo