Previous |  Up |  Next

Article

Title: The existence of a periodic solution of a parabolic equation with the Bessel operator (English)
Author: Lauerová, Dana
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 29
Issue: 1
Year: 1984
Pages: 40-44
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: In this paper, the existence of an $\omega$-periodic weak solution of a parabolic equation (1.1) with the boundary conditions (1.2) and (1.3) is proved. The real functions $f(t,r),h(t),a(t)$ are assumed to be $\omega$-periodic in $t,f\in L_2(S,H),a,h$ such that $a'\in L_\infty (R), h'\in L_\infty (R)$ and they fulfil (3). The solution $u$ belongs to the space $L_2(S,V)\cap L_\infty (S,H)$, has the derivative $u'\in L_2(S,H)$ and satisfies the equations (4.1) and (4.2). In the proof the Faedo-Galerkin method is employed. (English)
Keyword: diffusion
Keyword: Bessel operator
Keyword: periodic solutions
Keyword: existence
Keyword: weak solution
MSC: 35B10
MSC: 35D05
MSC: 35K20
idZBL: Zbl 0552.35042
idMR: MR0729951
DOI: 10.21136/AM.1984.104066
.
Date available: 2008-05-20T18:23:58Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104066
.
Reference: [1] R. S. Minasjan: On one problem of the periodic heat flow in the infinite cylinder.Dokl. Akad. Nauk Arm. SSR 48 (1969). MR 0241828
Reference: [2] H. Triebel: Höhere Analysis.VEB Berlin 1972. Zbl 0257.47001
.

Files

Files Size Format View
AplMat_29-1984-1_6.pdf 725.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo