Previous |  Up |  Next

Article

Title: Internal finite element approximations in the dual variational method for second order elliptic problems with curved boundaries (English)
Author: Hlaváček, Ivan
Author: Křížek, Michal
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 29
Issue: 1
Year: 1984
Pages: 52-69
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: Using the stream function, some finite element subspaces of divergence-free vector functions, the normal components of which vanish on a part of the piecewise smooth boundary, are constructed. Applying these subspaces, an internal approximation of the dual problem for second order elliptic equations is defined. A convergence of this method is proved without any assumption of a regularity of the solution. For sufficiently smooth solutions an optimal rate of convergence is proved. The internal approximation can be obtained by solving a system of linear algebraic equations with a positive definite matrix. (English)
Keyword: dual variational methods
Keyword: stream function
Keyword: finite element
Keyword: piecewise smooth boundary
Keyword: dual problem
Keyword: optimal rate of convergence
MSC: 35J25
MSC: 65N30
idZBL: Zbl 0543.65074
idMR: MR0729953
DOI: 10.21136/AM.1984.104068
.
Date available: 2008-05-20T18:24:04Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104068
.
Reference: [1] P. G. Ciarlet: The finite element method for elliptic problems.North-Holland, Amsterdam, New York, Oxford, 1978. Zbl 0383.65058, MR 0520174
Reference: [2] P. G. Ciarlet P. A. Raviart: Interpolation theory over curved elements, with applications to finite element methods.Comput. Methods Appl. Mech. Engrg. 1 (1972), 217-249. MR 0375801, 10.1016/0045-7825(72)90006-0
Reference: [3] P. Doktor: On the density of smooth functions in certain subspaces of Sobolev spaces.Comment. Math. Univ. Carolin. 14, 4 (1973), 609-622. MR 0336317
Reference: [4] B. M. Fraeijs de Veubeke M. Hogge: Dual analysis for heat conduction problems by finite elements.Internat. J. Numer. Methods Engrg. 5 (1972), 65-82. 10.1002/nme.1620050107
Reference: [5] V. Girault P. A. Raviart: Finite element approximation of the Navier-Stokes equations.Springer-Verlg, Berlin, Heidelberg, New York, 1979. MR 0548867
Reference: [6] J. Haslinger I. Hlaváček: Contact between elastic perfectly plastic bodies.Apl. Mat. 27 (1982), 27-45. MR 0640138
Reference: [7] J. Haslinger I. Hlaváček: Convergence of a finite element method based on the dual variational formulation.Apl. Mat. 21 (1976), 43 - 65. MR 0398126
Reference: [8] I. Hlaváček: The density of solenoidal functions and the convergence of a dual finite element method.Apl. Mat. 25 (1980), 39-55. MR 0554090
Reference: [9] M. Křížek: Conforming equilibrium finite element methods for some elliptic plane problems.RAIRO Anal. Numer. 17 (1983), 35--65. MR 0695451, 10.1051/m2an/1983170100351
Reference: [10] O. A. Ladyzenskaya: The mathematical theory of viscous incompressible flow.Gordon & Breach, New York, 1969. MR 0254401
Reference: [11] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [12] J. Nečas I. Hlaváček: Mathematical theory of elastic and elasto-plastic bodies: an introduction.Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, 1981. MR 0600655
Reference: [13] P. Neittaanmäki J. Saranen: On finite element approximation of the gradient for solution of Poisson equation.Numer. Math. 37 (1981), 333-337. MR 0627107, 10.1007/BF01400312
Reference: [14] J. Penman J. R. Fraser: Complementary and dual energy finite element principles in magnetostatics.IEEE Trans. on Magnetics 18 (1982), 319-324. 10.1109/TMAG.1982.1061883
Reference: [15] G. Strang G. J. Fix: An analysis of the finite element method.Prentice Hall, New Jersey, 1973. MR 0443377
Reference: [16] J. M. Thomas: Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes.Thesis, Université Paris VI, 1977.
Reference: [17] M. Zlámal: Curved elements in the finite element method.Čislennyje metody mechaniki splošnoj sredy, SO AN SSSR, 4 (1973), No. 5, 25-49.
Reference: [18] M. Zlámal: Curved elements in the finite element method.SIAM J. Numer. Anal. 10 (1973), 229-240. MR 0395263, 10.1137/0710022
.

Files

Files Size Format View
AplMat_29-1984-1_8.pdf 2.039Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo