Previous |  Up |  Next

Article

Title: A proof of monotony of the Temple quotients in eigenvalue problems (English)
Author: Rektorys, Karel
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 29
Issue: 2
Year: 1984
Pages: 149-158
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: If the so-called Collatz method is applied to get twosided estimates of the first eigenvalue $\lambda_1$, the sequences of the so-called Schwarz quatients (which are upper bounds for $\lambda_1$) and of the so-called Temple quotients (which are lower bounds) are constructed. While monotony of the first sequence was proved many years ago, monotony of the second one has been proved only recently by F. goerisch and J. Albrecht in their common paper "Die Monotonie der Templeschen Quotienten" (ZAMM, in print). In the present paper another (so to say elementary) proof is given. (English)
Keyword: monotony
Keyword: Collatz method
Keyword: first eigenvalue
Keyword: Schwarz quotients
Keyword: Temple quotients
MSC: 34L99
MSC: 35P15
MSC: 65L15
MSC: 65N25
idZBL: Zbl 0544.65056
idMR: MR0738500
DOI: 10.21136/AM.1984.104078
.
Date available: 2008-05-20T18:24:31Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104078
.
Reference: [1] F. Goerisch J. Albrecht: Die Mononie der Templeschen Quotienten.ZAMM (in print).
Reference: [2] K. Rektorys: Variational Methods in Mathematics, Science and Engineering.2nd Ed. Dordrecht- Boston-London, J. Reidel 1979. (Czech: Praha, SNTL 1974.) MR 0596582
Reference: [3] K. Rektorys Z. Vospěl: On a method of twosided eigenvalue estimates for elliptic equations of the form $Au - \lambda Bu = 0$.Aplikace matematiky 26 (1981), 211-240. MR 0615608
.

Files

Files Size Format View
AplMat_29-1984-2_7.pdf 1.266Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo