Previous |  Up |  Next

Article

Title: Two characterizations of Pareto minima in convex multicriteria optimization (English)
Author: Zlobec, Sanjo
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 29
Issue: 5
Year: 1984
Pages: 342-349
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: Two conditions are given each of which is both necessary and sufficient for a point to be a global Pareto minimum. The first one is obtained by studying programs where each criterion appears as a single objective function, while the second one is given in terms of a "restricted Lagrangian". The conditions are compared with the familiar characterizations of properly efficient and weakly efficient points of Karlin and Geoffrion. (English)
Keyword: optimality conditions
Keyword: properly efficient point
Keyword: weakly efficient point
Keyword: characterization of optimality
Keyword: convex multicriteria optimization
Keyword: global Pareto minimum
Keyword: restricted Lagrangian
MSC: 90C25
MSC: 90C31
idZBL: Zbl 0549.90085
idMR: MR0772269
DOI: 10.21136/AM.1984.104104
.
Date available: 2008-05-20T18:25:41Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104104
.
Reference: [1] R. Abrams L. Kerzner: A simplified test for optimality.Journal of Optimization Theory and Applications 25 (1978), 161-170. MR 0484413, 10.1007/BF00933262
Reference: [2] A. Ben-Israel: Linear equations and inequalities on finite dimensional, real or complex, vector spaces: A unified theory.Journal of Mathematical Analysis and Applications 27 (1969), 367-389. Zbl 0174.31502, MR 0242865, 10.1016/0022-247X(69)90054-7
Reference: [3] A. Ben-Israel A. Ben-Tal A. Charnes: Necessary and sufficient conditions for Pareto optimum in convex programming.Econometrica 45 (1977), 811 - 820. MR 0452684, 10.2307/1912673
Reference: [4] A. Ben-Israel A. Ben-Tal S. Zlobec: Optimality in Nonlinear Programming: A Feasible Directions Approach.Wiley-Interscience, New York, 1981. MR 0607673
Reference: [5] A. Ben-Tal A. Ben-Israel S. Zlobec: Characterization of optimality in convex programming without a constraint qualification.Journal cf Optimization Theory and Applications 20 (1976), 417-437. MR 0439190, 10.1007/BF00933129
Reference: [6] G. R. Bitran T. L. Magnanti: The structure of admissible points with respect to cone dominance.Journal of Optimization Theory and Applications 29 (1979), 473 - 514. MR 0552107
Reference: [7] Y. Censor: Pareto optimality in multiobjective problems.Applied Mathematics and Optimization 4 (1977), 41 - 59. MR 0488732, 10.1007/BF01442131
Reference: [8] A. Charnes W. W. Cooper: Management Models and Industrial Applications of Linear Programming.Vol. I. Wiley, New York, 1961. MR 0157774
Reference: [9] A. M. Geoffrion: Proper efficiency and the theory of vector maximization.Journal of Mathematical Analysis and Applications 22 (1968), 618 - 630. Zbl 0181.22806, MR 0229453, 10.1016/0022-247X(68)90201-1
Reference: [10] S. Karlin: Mathematical Methods and Theory in Games. Programming and Economics.Vol. I, Addison-Wesley, Reading, Massachussetts, 1959. MR 1160778
Reference: [11] V. V. Podinovskii: Applying the procedure for maximizing the basic local criterion to solving the vector optimization problems.Systems Control 6, Novosibirsk, 1970 (In Russian).
Reference: [12] V. V. Podinovskii V. M. Gavrilov: Optimization with Respect to Successive Criteria.Soviet Radio, Moscow, 1975 (In Russian). MR 0454779
Reference: [13] R. T. Rockafellar: Convex Analysis.Princeton University Press, 1970. Zbl 0193.18401, MR 0274683
Reference: [14] M. E. Salukvadze: Vector-Valued Optimization Problems in Control Theory.Academic Press, New York, 1979. Zbl 0471.49001, MR 0563922
Reference: [15] S. Smale: Global analysis and economics III.Journal of Mathematical Economics 1 (1974), 107-117. Zbl 0316.90007, MR 0426823, 10.1016/0304-4068(74)90002-0
Reference: [16] S. Smale: Global analysis and economics V.Journal of Mathematical Economics 1 (1974), 213-221. Zbl 0357.90010, MR 0426826, 10.1016/0304-4068(74)90013-5
Reference: [17] S. Smale: Global analysis and economics VI.Journal of Mathematical Economics 3 (1976), 1-14. Zbl 0348.90017, MR 0426827, 10.1016/0304-4068(76)90002-1
Reference: [18] S. Zlobec: Regions of stability for ill-posed convex programs.Aplikace Matematiky 27 (1982), 176-191. Zbl 0482.90073, MR 0658001
.

Files

Files Size Format View
AplMat_29-1984-5_4.pdf 1.022Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo