Previous |  Up |  Next

Article

Title: Approximations of parabolic variational inequalities (English)
Author: Ženíšek, Alexander
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 30
Issue: 1
Year: 1985
Pages: 11-35
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: The paper deals with an initial problem of a parabolic variational inequality whichcontains a nonlinear elliptic form $a(v,w)$ having a potential $J(v)$, which is twice $G$-differentiable at arbitrary $v\in H^1(\Omega)$. This property of $a(v,w)$ makes it possible to prove convergence of an approximate solution defined by a linearized scheme which is fully discretized - in space by the finite elements method and in time by a one-step finite-difference method. Strong convergence of the approximate solution is proved without any regularity assumptions on the exact solution. An error bound is also derived under the assumption that the exact solution is sufficiently smooth. (English)
Keyword: parabolic variational inequalities
Keyword: one-step finite difference method
Keyword: finite element method
Keyword: convergence
Keyword: error bound
MSC: 49A29
MSC: 49J40
MSC: 65K10
MSC: 65M60
idZBL: Zbl 0574.65066
idMR: MR0779330
DOI: 10.21136/AM.1985.104124
.
Date available: 2008-05-20T18:26:33Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104124
.
Reference: [1] I. Bock J. Kačur: Application of Rothe's method to parabolic variational inequalities.Math. Slovaca 31 (1981), 429-436. MR 0637970
Reference: [2] J. Céa: Optimization.Dunod, Paris 1971. Zbl 0231.94026, MR 0298892
Reference: [3] P. G. Ciarlet: The Finite Element Method for Elliptic Problems.North-Holland, Amsterdam 1978. Zbl 0383.65058, MR 0520174
Reference: [4] H. Gajewski K. Gröger K. Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen.Akademie-Verlag, Berlin 1974. MR 0636412
Reference: [5] J. Haslinger: Finite element analysis for unilateral problems with obstacles on the boundary.Apl. mat. 22 (1977), 180-188. Zbl 0434.65083, MR 0440956
Reference: [6] I. Hlaváček J. Haslinger J. Nečas J. Lovíšek: Solving Yariational Inequalities in Mechanics.Alfa-SNTL, Bratislava-Prague, 1982. (In Slovak.) MR 0755152
Reference: [7] V. Jarník: Integral Calculus II.Nakladatelství ČSAV, Prague 1955. (In Czech.)
Reference: [8] C. Johnson: A convergence estimate for an approximation of a parabolic variational inequality.SIAM J. Numer. Anal. 13 (1976), 599-606. Zbl 0337.65055, MR 0483545, 10.1137/0713050
Reference: [9] J. Kačur: On an approximate solution of variational inequalities.(To appear in Math. Nachr.) MR 0809346
Reference: [10] A. Kufner O. John S. Fučík: Function Spaces.Academia, Prague 1977. MR 0482102
Reference: [11] J. L. Lions: Quelques Méthodes de Résolution des Problèmes aux Lirnites Non Linéaires.Dunod and Gauthier - Villars, Paris 1969. MR 0259693
Reference: [12] J. Nečas: Les Méthodes Directes en Théorie des Équations Elliptiques.Academia, Prague 1967. MR 0227584
Reference: [13] A. Ženíšek M. Zlámal: Convergence of a finite element procedure for solving boundary value problems of the fourth order.Int. J. Numer. Meth. Engng. 2 (1970), 307-310. MR 0284016, 10.1002/nme.1620020302
Reference: [14] M. Zlámal: Curved elements in the finite element method I.SIAM J. Numer. Anal. 30 (1973), 229-240. MR 0395263, 10.1137/0710022
Reference: [15] M. Zlámal: Finite element solution of quasistationary nonlinear magnetic field.R.A.I.R.O. Anal. Numer. 16 (1982), 161-191. MR 0661454
Reference: [16] M. Zlámal: A linear scheme for the numerical solution of nonlinear quasistationary magnetic fields.Math. Соmр. 41 (1983), 425-440. MR 0717694
.

Files

Files Size Format View
AplMat_30-1985-1_3.pdf 3.314Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo