Previous |  Up |  Next

Article

Title: Internal finite element approximation in the dual variational method for the biharmonic problem (English)
Author: Hlaváček, Ivan
Author: Křížek, Michal
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 30
Issue: 4
Year: 1985
Pages: 255-273
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: A conformal finite element method is investigated for a dual variational formulation of the biharmonic problem with mixed boundary conditions on domains with piecewise smooth curved boundary. Thus in the problem of elastic plate the bending moments are calculated directly. For the construction of finite elements a vector potential is used together with $C^0$-elements. The convergence of the method is proved and an algorithm described. (English)
Keyword: conforming finite element method
Keyword: dual variational formulation
Keyword: biharmonic problem
Keyword: mixed boundary conditions
MSC: 31A30
MSC: 35J40
MSC: 49D25
MSC: 65E05
MSC: 65N30
MSC: 73K25
idZBL: Zbl 0584.65068
idMR: MR0795986
DOI: 10.21136/AM.1985.104149
.
Date available: 2008-05-20T18:27:43Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104149
.
Reference: [1] F. Brezzi: Non-standard finite elements for fourth order elliptic problems. Energy Methods in Finite Element Analysis.John Wiley&Sons Ltd., Chichester, New York, Brisbane, Toronto, 1979, 193-211. MR 0537006
Reference: [2] F. Brezzi P. A. Raviart: Mixed finite element methods for 4th order elliptic equations.Topics in Numerical Analysis, vol. III, Academic Press, London, 1976, 33 - 36. MR 0657975
Reference: [3] P. G. Ciarlet: The finite element method for elliptic problems.North-Holland, Amsterdam, New York, Oxford, 1978. Zbl 0383.65058, MR 0520174
Reference: [4] P. G. Ciarlet R. Glowinski: Dual iterative techniques for solving a finite element approximation of the biharmonic equation.Comput. Methods Appl. Mech. Engrg. 5 (1975), 277-295. MR 0373321, 10.1016/0045-7825(75)90002-X
Reference: [5] P. Doktor: On the density of smooth functions in certain subspaces of Sobolev spaces.Comment. Math. Univ. Carolin. 14, 4 (1973), 609-622. MR 0336317
Reference: [6] B. Fraeijs de Veubeke: Finite element method in aerospace engineering problems. Computing Methods in Applied Sciences and Engineering.Part 1, Springer- Verlag, Berlin, Heidelberg, New York, 1974, 224-258.
Reference: [7] B. Fraeijs de Veubeke G. Sander: An equilibrium model for plate bending.Int. J. Solids and Structures 4 (1968), 447-468. 10.1016/0020-7683(68)90049-8
Reference: [8] I. Hlaváček: Convergence of an equilibrium finite element model for plane elastostatics.Apl. Mat. 24 (1979), 427-457. MR 0547046
Reference: [9] I. Hlaváček M. Křížek: Internal finite element approximations in the dual variational method for second order elliptic problems with curved boundaries.Apl. Mat. 29 (1984), 52-69. MR 0729953
Reference: [10] J. Hřebíček: Numerical analysis of the general biharmonic problem by the finite element method.Apl. Mat. 27 (1982), 352-374. MR 0674981
Reference: [11] M. Křížek: Conforming equilibrium finite element methods for some elliptic plane problems.RAIRO Anal. Numer. 17 (1983), 35-65. MR 0695451, 10.1051/m2an/1983170100351
Reference: [12] L. A. Ljusternik V. I. Sobolev: A short course of functional analysis.(Russian). Izd. Vysšaja škola, Moscow, 1982.
Reference: [13] L. Mansfield: A Clough-Tocher type element useful for fourth order problems over nonpolygonal domains.Math. Соmр. 32 (1978), 135-142. Zbl 0382.65060, MR 0468241
Reference: [14] S. G. Michlin: Variational methods in mathematical physics.(Russian). Izd. Nauka, Moscow, 1970.
Reference: [15] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [16] J. Nečas I. Hlaváček: Mathematical theory of elastic and elasto-plastic bodies: an introduction.Elsevier, Amsterdam, Oxford, New York, 1981. MR 0600655
Reference: [17] K. Rektorys: Survey of applicable mathematics.Iliffe Books Ltd., London, SNTL, Prague, 1969. Zbl 0175.15802, MR 0241025
Reference: [18] K. Rektorys: Variational methods in mathematics, science and engineering.D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1977. MR 0487653
Reference: [19] G. Sander: Application of the dual analysis principle.Proc. of the IUTAM Sympos. on High Speed Computing of Elastic Structures, Congrès et Colloques de l'Université de Liège, 1971, 167-207.
Reference: [20] M. Zlámal: Curved elements in the finite element method.SIAM J. Numer. Anal. 10 (3973), 229-240. MR 0395263, 10.1137/0710022
Reference: [21] A. Ženíšek: Curved triangular finite $C^m$-elements.Apl. Mat. 23 (1978), 346-377. MR 0502072
.

Files

Files Size Format View
AplMat_30-1985-4_3.pdf 2.328Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo