| Title: | On the concreteness of quantum logics (English) | 
| Author: | Pták, Pavel | 
| Author: | Wright, John D. Maitland | 
| Language: | English | 
| Journal: | Aplikace matematiky | 
| ISSN: | 0373-6725 | 
| Volume: | 30 | 
| Issue: | 4 | 
| Year: | 1985 | 
| Pages: | 274-285 | 
| Summary lang: | English | 
| Summary lang: | Czech | 
| Summary lang: | Russian | 
| . | 
| Category: | math | 
| . | 
| Summary: | It is shown that for any quantum logic $L$ one can find a concrete logic $K$ and a surjective homomorphism $f$ from $K$ onto $L$ such that $f$ maps the centre of $K$ onto the centre of $L$. Moreover, one can ensure that each finite set of compatible elements in $L$ is the image of a compatible subset of $K$. This result is "best possible" - let a logic $L$ be the homomorphic image of a concrete logic under a homomorphism such that, if $F$ is a finite subset of the pre-image of a compatible subset of $L$, then $F$ is compatible. Then $L$ must be concrete. In the second part one considers embeddings into concrete logics. It is shown that any concrete logic can be embedded into a concrete logic with preassigned centre and an abundance of two-valued measures. Finally, one proves that an arbitrary logic can be mapped into a concrete logic by a centrally additive mapping which preserves the ordering and complementation. (English) | 
| Keyword: | orthomodular lattice | 
| Keyword: | orthomodular poset | 
| Keyword: | centres | 
| Keyword: | orthocomplemented posets | 
| Keyword: | concrete logics | 
| MSC: | 03G12 | 
| MSC: | 06C15 | 
| MSC: | 81B10 | 
| idZBL: | Zbl 0586.03050 | 
| idMR: | MR0795987 | 
| DOI: | 10.21136/AM.1985.104150 | 
| . | 
| Date available: | 2008-05-20T18:27:46Z | 
| Last updated: | 2020-07-28 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/104150 | 
| . | 
| Reference: | [1] V. Alda: On 0-1 measures for projectors.Aplikace Matematiky 26, 57-58 (1981). MR 0602402 | 
| Reference: | [2] L. J. Bunce D. M.  Wright: Qantum measures and states on Jordan algebras.Comm. Math. Phys. (To appear). MR 0786572 | 
| Reference: | [3] J. Brabec P. Pták: On compatibility in quantum logics.Foundations of Physics, Vol. 12, No. 2, 207-212 (1982). MR 0659779, 10.1007/BF00736849 | 
| Reference: | [4] R. Godowski: Varieties of orthomodular lattices with a strongly full set of states.Demonstration Mathematica, Vol. XIV, No. 3, (1981). Zbl 0483.06007, MR 0663122 | 
| Reference: | [5] R. Greechie: Orthomodular lattices admitting no states.J. Comb. Theory 10, 119-132 (1971). Zbl 0219.06007, MR 0274355, 10.1016/0097-3165(71)90015-X | 
| Reference: | [6] S. Gudder: Stochastic Methods in Quantum Mechanics.North-Holland 1979. Zbl 0439.46047, MR 0543489 | 
| Reference: | [7] P. Pták: Weak dispersion-free states and the hidden variables hypothesis.J. Math. Physics 24 (4), 839-840(1983). MR 0700618, 10.1063/1.525758 | 
| Reference: | [8] P. Pták V. Rogolewicz: Measures on orthomodular partially ordered sets.J. Pure and Applied Algebra 28, 75-85 (1983). MR 0692854, 10.1016/0022-4049(83)90074-9 | 
| Reference: | [9] S. Pulmannová: Compatibility and partial compatibility in  quantum logics.Ann. Inst. Henri Poincaré, Vol. XXXIV, No. 4, 391-403 (1981). MR 0625170 | 
| Reference: | [10] R. Sikorski: Boolean Algebras.Springer-Verlag (1964). Zbl 0123.01303, MR 0126393 | 
| Reference: | [11] V. Varadarajan: Geometry of Quantum Theory I.Von Nostrand, Princeton (1968). MR 0471674 | 
| Reference: | [12] M. Zierler M. Schlessinger: Boolean embedding of orthomodular sets and quantum logics.Duke J. Math. 32, 251-262 (1965). MR 0175520, 10.1215/S0012-7094-65-03224-2 | 
| . |