Full entry |
PDF
(1.3 MB)
Feedback

hypothesis of randomness; two-sample location-scale problem; quadratic forms of linear rank statistics; asymptotically independent; contiguous alternatives; asymptotic power; alternatives of difference in location and scale; score generating function

References:

[1] R. J. Beran: **Linear rank statistics under alternatives indexed by a vector parameter**. Ann. Math. Statist. 41 (1970), 1896-1905. DOI 10.1214/aoms/1177696691 | MR 0275594 | Zbl 0231.62064

[2] D. R. Cox D. V. Hinkley: **Theoretical Statistics**. London, Chapman and Hall, 1974. MR 0370837

[3] B. S. Duran W. W. Tsai T. S. Lewis: **A class of location-scale nonparametric tests**. Biometrika 63 (1976), 11З-176. MR 0408102

[4] M. N. Goria: **A survey of two sample location-scale problem: asymptotic relative efficiencies of some rank tests**. Statistica Neerlandica 36 (1982), 3-13. DOI 10.1111/j.1467-9574.1982.tb00769.x | MR 0653305 | Zbl 0488.62028

[5] J. Hájek Z. Šidák: **Theory of Rank Tests**. New York, Academic Press, 1967. MR 0229351

[6] Y. Lepage: **A combination of Wilcoxon and Ansari-Bradley statistics**. Biometrika 58 (1971), 213-217. DOI 10.1093/biomet/58.1.213 | MR 0408101

[7] Y. Lepage: **Asymptotically optimum rank tests for contiguous location-scale alternative**. Commun. Statist. Theor. Meth. A 4 (7) (1975), 671-687. MR 0403060

[8] Y. Lepage: **Asymptotic power efficiency for a location-scale problem**. Commun. Statist. Theor. Meth., A 5 (13) (1976), 1257-1274. DOI 10.1080/03610927608827440 | MR 0440789

[9] Y. Lepage: **A class of nonparametric tests for location-scale parameter**. Commun. Statist. Theor. Meth. A 6 (7) (1977), 649-659. DOI 10.1080/03610927708827522 | MR 0448696

[10] R. H. Randles R. V. Hogg: **Certain uncorrelated and independent rank statistics**. JASA 66 (1971), 569-574. DOI 10.1080/01621459.1971.10482307