Previous |  Up |  Next

Article

Title: On the asymptotic properties of rank statistics for the two-sample location and scale problem (English)
Author: Goria, Mohamed N.
Author: Vorlíčková, Dana
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 30
Issue: 6
Year: 1985
Pages: 425-434
Summary lang: English
Summary lang: Czech
Summary lang: Russian
.
Category: math
.
Summary: The equivalence of the symmetry of density of the distribution of observations and the oddness and evenness of the score-generating functions for the location and the scale problem, respectively, is established at first. Then, it is shown that the linear rank statistics with scores generated by these functions are asymptotically independent under the hypothesis of randomness as well as under contiguous alternatives in the last part of the paper. The linear and quadratic forms of these statistics are considered for testing the two-sample location-scale problem simultaneously. (English)
Keyword: hypothesis of randomness
Keyword: two-sample location-scale problem
Keyword: quadratic forms of linear rank statistics
Keyword: asymptotically independent
Keyword: contiguous alternatives
Keyword: asymptotic power
Keyword: alternatives of difference in location and scale
Keyword: score generating function
MSC: 62E20
MSC: 62G10
idZBL: Zbl 0614.62052
idMR: MR0813531
DOI: 10.21136/AM.1985.104172
.
Date available: 2008-05-20T18:28:47Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104172
.
Reference: [1] R. J. Beran: Linear rank statistics under alternatives indexed by a vector parameter.Ann. Math. Statist. 41 (1970), 1896-1905. Zbl 0231.62064, MR 0275594, 10.1214/aoms/1177696691
Reference: [2] D. R. Cox D. V. Hinkley: Theoretical Statistics.London, Chapman and Hall, 1974. MR 0370837
Reference: [3] B. S. Duran W. W. Tsai T. S. Lewis: A class of location-scale nonparametric tests.Biometrika 63 (1976), 11З-176. MR 0408102
Reference: [4] M. N. Goria: A survey of two sample location-scale problem: asymptotic relative efficiencies of some rank tests.Statistica Neerlandica 36 (1982), 3-13. Zbl 0488.62028, MR 0653305, 10.1111/j.1467-9574.1982.tb00769.x
Reference: [5] J. Hájek Z. Šidák: Theory of Rank Tests.New York, Academic Press, 1967. MR 0229351
Reference: [6] Y. Lepage: A combination of Wilcoxon and Ansari-Bradley statistics.Biometrika 58 (1971), 213-217. MR 0408101, 10.1093/biomet/58.1.213
Reference: [7] Y. Lepage: Asymptotically optimum rank tests for contiguous location-scale alternative.Commun. Statist. Theor. Meth. A 4 (7) (1975), 671-687. MR 0403060
Reference: [8] Y. Lepage: Asymptotic power efficiency for a location-scale problem.Commun. Statist. Theor. Meth., A 5 (13) (1976), 1257-1274. MR 0440789, 10.1080/03610927608827440
Reference: [9] Y. Lepage: A class of nonparametric tests for location-scale parameter.Commun. Statist. Theor. Meth. A 6 (7) (1977), 649-659. MR 0448696, 10.1080/03610927708827522
Reference: [10] R. H. Randles R. V. Hogg: Certain uncorrelated and independent rank statistics.JASA 66 (1971), 569-574. 10.1080/01621459.1971.10482307
.

Files

Files Size Format View
AplMat_30-1985-6_5.pdf 1.365Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo