Previous |  Up |  Next

Article

Title: Some examples concerning applicability of the Fredholm-Radon method in potential theory (English)
Author: Král, Josef
Author: Wendland, Wolfgang
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 31
Issue: 4
Year: 1986
Pages: 293-308
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: Simple examples of bounded domains $D\subset \bold R^3$ are considered for which the presence of peculiar corners and edges in the boundary $\delta D$ causes that the double layer potential operator acting on the space $\Cal S(\delta D)$ of all continuous functions on $\delta D$ can for no value of the parameter $\alpha$ be approximated (in the sub-norm) by means of operators of the form $\alpha I+T$ (where $I$ is the identity operator and $T$ is a compact linear operator) with a deviation less then $|\alpha|$; on the other hand, such approximability turns out to be possible for $\alpha = \frac 12$ if a new norm is introduced in $\Cal S(\delta D)$ with help of a suitable weight function. (English)
Keyword: double layer potential
Keyword: Fredholm-Radom method in potential theory
Keyword: rectangular
Keyword: compact boundary
Keyword: Dirichlet problem
Keyword: Neumann problem
MSC: 31B20
MSC: 47A53
MSC: 47B38
idZBL: Zbl 0615.31005
idMR: MR0854323
DOI: 10.21136/AM.1986.104208
.
Date available: 2008-05-20T18:30:24Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104208
.
Reference: [1] K. Arbenz: Integralgleichungen für einige Randwertprobleme für Gebiete mit Ecken.Promotionsarbeit Nr. 2777, Eidgenössische Technische Hochschule in Zürich 1958, 1 - 41. Zbl 0084.09603, MR 0101416
Reference: [2] Ю. Д. Бураго В. Г. Мазъя: Некоторые вопросы теории потенциала и теории функций для областей с нерегулярными границами.Записки научных семинаров ЛОМИ, т. 3, 1967. Zbl 1230.82006
Reference: [3] A. P. Calderón С. P. Calderón E. Fabes M. Jodeit N. M. Riviere: Applications of the Cauchy integral on Lipschitz curves.Bull. Amer. Math. Soc. 84 (1978), 287-290. MR 0460656, 10.1090/S0002-9904-1978-14478-4
Reference: [4] T. Carleman: Über das Neumann-Poincarésche Problem für ein Gebiet mit Ecken.Inaugural - Dissertation Uppsala 1916.
Reference: [5] И. И. Данилюк: Нерегулярные граничные задачи на плоскости.Наука, Москва 1975. Zbl 1170.01354
Reference: [6] E. В. Fabes M. Jodeit, Jr. J. E. Lewis: Double layer potentials for domains with corners and edges.Indiana Univ. Math. J. 26 (1977), 95-114. MR 0432899, 10.1512/iumj.1977.26.26007
Reference: [7] J. Král: The Fredholm radius of an operator in potential theory.Czechoslovak Math. J. 15 (1965), 454-473; 565-588. MR 0190363
Reference: [8] J. Král: The Fredholm method in potential theory.Trans. Amer. Math. Soc. 125 (1966), 511-547. MR 0209503, 10.2307/1994580
Reference: [9] J. Král: Integral operators in potential theory.Lecture Notes in Math. vol. 823 (1980), Springer-Verlag. MR 0590244, 10.1007/BFb0091035
Reference: [10] J. Radon: Über lineare Funktionaltransformationen und Funktionalgleichungen.Sitzber. Akad. Wiss. Wien, Math.-Nat. Kl. IIa, 128 (1919), 1083-1121.
Reference: [11] J. Radon: Über die Randwertaufgaben beim logarithmischen Potential.ibid. 1123-1167. Zbl 0061.23403
Reference: [12] F. Riesz B. Sz.-Nagy: Leçons d'analyse fonctionnelle.Akadémiai Kiadó, Budapest 1972.
Reference: [13] G. Verchota: Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains.J. of Functional Analysis 59 (1984), 572-611. Zbl 0589.31005, MR 0769382, 10.1016/0022-1236(84)90066-1
Reference: [14] W. Wendland: Lösung der ersten und zweiten Randwertaufgaben des Innen- und Aussengebietes für Potentialgleichung im $R_3$ durch Randbelegungen.Bericht des Hahn-Meitner Institute für Kernforschung Berlin, HMI-B 41, BM 19 (1965), 1-99. MR 0232010
Reference: [15] W. Wendland: Die Behandlung von Randwertaufgaben im $R^3$ mit Hilfe von Einfach und Doppelschichtpotentialen.Numerische Mathematik 11 (1968), 380-404. MR 0231550, 10.1007/BF02161886
Reference: [16] W. Wendland: Boundary element methods and their asymptotic convergence.Preprint Nr. 690, TH Darmstadt (1982), 1-82. MR 0762829
Reference: [17] T. S. Angell R. E. Kleinman J. Král: Double layer potentials on boundaries with corners and edges.Comment. Math. Univ. Carolinae 27 (1986).
.

Files

Files Size Format View
AplMat_31-1986-4_4.pdf 2.106Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo