Previous |  Up |  Next

Article

Title: Finite element solution of flows through cascades of profiles in a layer of variable thickness (English)
Author: Feistauer, Miloslav
Author: Felcman, Jiří
Author: Vlášek, Zdeněk
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 31
Issue: 4
Year: 1986
Pages: 309-339
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: The paper is devoted to the numerical modelling of a subsonic irrotational nonviscous flow past a cascade of profiles in a variable thickness fluid layer. It leads to a nonlinear two-dimensional elliptic problem with nonstandard nonhomogeneous boundary conditions. The problem is discretized by the finite element method. Both theoretical and practical questions of the finite element implementation are studied; convergence of the method, numerical integration, iterative methods for the solution of the discrete problem and the algorithmization of the finite element solution. Some numerical results obtained by a multi-purpose program written by authors are presented. (English)
Keyword: numerical modelling
Keyword: subsonic irrotational inviscid flow
Keyword: cascade of profiles
Keyword: variable thickness fluid layer
Keyword: nonlinear two-dimensional elliptic problem
Keyword: nonhomogeneous boundary conditions
Keyword: finite element method
Keyword: convergence
Keyword: algorithmizations
Keyword: stream function
MSC: 65N30
MSC: 76-08
MSC: 76B10
MSC: 76M99
MSC: 76N10
idZBL: Zbl 0641.76067
idMR: MR0854324
.
Date available: 2008-05-20T18:30:27Z
Last updated: 2015-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/104209
.
Reference: [1] I. Babuška M. Práger E. Vitásek: Numerical Processes in Differential Equations.SNTL Praha and John Wiley & Sons, 1966. MR 0223101
Reference: [2] Ph. G. Ciarlet: The Finite Element Method for Elliptic Problems.Studies in Math. and its Appl. Vol. 4, North-Holland, Amsterdam-New York-Oxford, 1979. MR 0520174
Reference: [3] M. Feistauer: Mathematical study of rotational incompressible non-viscous flows through multiply connected domains.Apl. mat. 26 (1981), No. 5, 345-364. Zbl 0486.76025, MR 0631753
Reference: [4] M. Feistauer: Numerical solution of non-viscous axially symmetric channel flows.In: Proc. of the conf. "Mathematical Methods in Fluids Mechanics", Oberwolfach 1981, Methoden und Verfahren der Math. Physik, Band 24, P. Lang, Frankfurt am Main, 1982.
Reference: [5] M. Feistauer: On irrotational flows through cascades of profiles in a layer of variable thickness.Apl. mat. 29 (1984), No. 6, 423-458. Zbl 0598.76061, MR 0767495
Reference: [6] M. Feistauer: Finite element solution of non-viscous flows in cascades of blades.ZAMM 65 (1985) 4, T 191 - T 194. Zbl 0605.76068
Reference: [7] M. Feistauer: Mathematical and numerical study of flows through cascades of profiles.In: Proc. of "International Conference on Numerical Methods and Applications" held in Sofia, August 27-September 2, 1984, 271-278.
Reference: [8] M. Feistauer: On the finite element approximation of a cascade flow problem.(to appear in Numer. Math.). Zbl 0646.76085, MR 0884294
Reference: [9] M. Feistauer: Finite element solution of flow problems with trailing conditions.(to appear). Zbl 0766.76049
Reference: [10] M. Feistauer J. Felcman: Numerical solution of an incompressible flow past a cascade of profiles in a layer of variable thickness by the finite element method.In: Proc. of the conf. "HYDROTURBO 1985" held in Olomouc, September 11-13, 1985.
Reference: [11] M. Feistauer J. Felcman Z. Vlášek: Finite element solution of flows in elements of blade machines.In: Proc. of "Eight Int. Conf. on Steam Turbines with Large Output" held in Karlovy Vary, October 30-November 1, 1984.
Reference: [12] M. Feistauer J. Felcman Z. Vlášek: Calculation of irrotational flows through cascades of blades in a layer of variable thickness.Research report, ŠKODA Plzeň, 1983 (in Czech).
Reference: [13] M. Feistauer Z. Vlášek: Irrotational steady subsonic flow of an ideal fluid - Theory and finite element solution.Research report, ŠKODA Plzeň, 1981 (in Czech).
Reference: [14] J. Felcman: Flow past a rotating cascade of blades in a layer of variable thickness.Research report, ČKD Praha, 1984 (in Czech).
Reference: [15] J. Felcman: Finite element solution of cascade flows.Thesis. Faculty of Mathematics and Physics, Prague, 1986 (in Czech).
Reference: [16] S. Fučík A. Kufner: Nonlinear Differential Equations.Studies in Applied Mechanics 2, Elsevier, Amsterdam-Oxford -New York, 1980. MR 0558764
Reference: [17] R. Glowinski: Numerical Methods for Nonlinear Variational Problems.Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1984. Zbl 0536.65054, MR 0737005
Reference: [18] A. Kufner O. John S. Fučík: Function Spaces.Academia, Prague, 1977. MR 0482102
Reference: [19] E. Martensen: Berechnung der Druckverteilung an Gitterprofilen in ebener Potentialströmung mit einen Fredholmschen Integralgleichung.Arch. Rat. Mech. Anal. 3 (1959), 253-270. MR 0114431
Reference: [20] J. Nečas: Les Méthodes Directes en Théories des Equations Elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [21] J. Nečas: Introduction to the Theory of Nonlinear Elliptic Equations.Teubner-Texte zur Mathematik, Band 52, Leipzig, 1983. MR 0731261
Reference: [22] M. Rokyta: Numerical solution of strongly nonlinear elliptic problems.Thesis. Faculty of Mathematics and Physics, Prague, 1985 (in Czech).
Reference: [23] G. Strang G. J. Fix: An Analysis of the Finite Element Method.Prentice Hall, Inc. 1974. MR 0443377
Reference: [24] Z. Vlášek: Integral equation method in a plane flow past profiles and cascades of profiles.Acta Polytechnica, 3 (IV, 1, 1977), 63-69.
.

Files

Files Size Format View
AplMat_31-1986-4_5.pdf 3.734Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo