Previous |  Up |  Next

Article

Title: On three problems of neutron transport theory (English)
Author: Kyncl, Jan
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 31
Issue: 6
Year: 1986
Pages: 441-460
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: In this paper, the initial-value problem, the problem of asymptotic time behaviour of its solution and the problem of criticality are studied in the case of linear Boltzmann equation for both finite and infinite media. Space of functions where these problems are solved is chosen in such a vay that the range of physical situations considered may be so wide as possible. As mathematical apparatus the theory of positive bounded operators and of semigroups are applied. Main results are summarized in three basic theorems. (English)
Keyword: neutron flux
Keyword: analytical solution
Keyword: cross sections
Keyword: semigroup of operators
Keyword: asymptotic behaviour
Keyword: linear Boltzmann equation
Keyword: neutron transport
Keyword: initial value problem
Keyword: non-negative asymptotic solution
Keyword: critical system
MSC: 45K05
MSC: 45M05
MSC: 82A75
MSC: 82C70
idZBL: Zbl 0615.45012
idMR: MR0870481
DOI: 10.21136/AM.1986.104223
.
Date available: 2008-05-20T18:31:05Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104223
.
Reference: [1] M. Borysiewicz, J. Mika: Time behaviour of thermal neutrons in moderating media.J. Math. Anal. 26 (1969) 461. 10.1016/0022-247X(69)90193-0
Reference: [2] E. W. Larsen, P. F. Zweifel: On the spectrum of linear transport operator.J. Math. Phys. 15 (1974) 1987. MR 0359648, 10.1063/1.1666570
Reference: [3] J. Mika: The initial-value problem in neutron thermalization.Neukleonik 9 (1967) 303.
Reference: [4] M G. Krein, M. A. Rutman: Linear operators leaving invariant a cone in a Banach space.Usp. Mat. Nauk III, 3 (1948) (Russian). Zbl 0030.12902, MR 0027128
Reference: [5] I. Vidav: Existence and uniqueness of nonnegative eigenfunctions of the Boltzmann operator.J. Math. Anal. Appl. 22 (1968) 144. Zbl 0155.19203, MR 0230531, 10.1016/0022-247X(68)90166-2
Reference: [6] J. Mika: Fundamental eigenvalues of the linear transport equation.J. Quant. Spectroscop. Radiat. Transfer 11 (1971) 879. MR 0408663, 10.1016/0022-4073(71)90062-8
Reference: [7] I. Marek: Some mathematical problems of the fast nuclear reactor theory.Apl. Mat. 8 (1963) 442 (Russian).
Reference: [8] H. G. Kaper C. G. Lekkerkerker, J. Hejtmanek: Spectral methods in linear transport theory.Stuttgart 1982. MR 0685594
Reference: [9] J. Kyncl: The initial-value problem in the theory of neutron transport.Kernenergie 19 (1976) 210.
Reference: [10] K. Yosida: Functional analysis.Moscow 1967. Zbl 0152.32102, MR 0225130
Reference: [11] N. Dunford, J. T. Schwarz: Linear operators.New York 1958.
.

Files

Files Size Format View
AplMat_31-1986-6_4.pdf 2.866Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo